Master of Science in Bio-Chemistry

Master of Science in biochemistry is post graduate degree programme in Biochemistry science. The study of Biochemistry involves the study of chemical processes within living organisms, including but not limited to living matter. All living organisms and living processes are governed by biochemical processes, which control information flow through biochemical signaling and chemical energy flow through metabolism. Generally Biochemistry, focuses on molecules such as proteins, carbohydrates, lipids, nucleic acids and other bio molecules, though increasingly processes instead of specific molecules are of primary concern. The program aims to provide a legitimate knowledge of each aspect of the structure and function of dwelling matters on the molecular stage and to utilize the information for the benefit of mankind. The course length is two years period both on everyday and distance foundation and the syllabus is divided into four semesters.

M.Sc. Biochemistry Eligibility for admission

Candidate who has passed the B.Sc. degree in any Life Sciences [Biochemistry/ Bsc MLT/Botany/ Plant Sciences and Plant Biotechnology/ Zoology/ Bioinformatics/ Biology/Chemistry with Botany/ Zoology as Allied Subjects] of this university or an examination of any other university accepted by the syndicate as equivalent thereto shall be eligible for admission to M.Sc. Degree Course in Biochemistry.

Duration of the programme

The duration of the course is for two academic years consisting of four semesters

M.Sc. Biochemistry Course Quality

The best candidates for it are those with the capacity to comprehend intricate biological processes and who possess a thorough comprehension of pertinent texts. The ability to construct arguments and participate in debates, to think critically and analytically, to think independently, and to solve problems are further essentials. This course is appropriate for students who can put together arguments, participate in debates, have critical and analytical thinking, and problem-solve independently. Practical abilities, numeracy abilities, communication, presentation, and IT skills, interpersonal and teamwork abilities, self-management abilities, and professional growth abilities are also necessary. Candidates who possess these qualities are a good fit.

How is M.Sc. Biochemistry Course Beneficial

As all of these programmes have biochemistry as one of the papers, they can enter the teaching profession for courses like B.Sc., M.Sc., B.Sc., B.Pharm., BPT, NURSING, MBBS, and BE biotech. Exciting prospects are waiting for them in foreign biotechnology and biochemical enterprises, and those with entrepreneurial skills can start their own biotech companies, diagnostic companies, or pharmaceutical companies. They can also work in a variety of research, technical, and related positions in both corporate and public institutions. By taking the UGC CSIR JRF/NET test after receiving their M.Sc. they might choose to pursue a junior research fellowship. After that, students can pursue a career as a lecturer and one in research and development, consulting, or a related field.

M.Sc. Biochemistry Employment Areas

Research Laboratories Pharmaceutical Industries **Diagnostic Centres Biotechnology** firms Health care centres and Clinical Laboratories Join in as scientific writers in life science companies Medical transcriptionists Clinical trial and drug designing Scientists in national and international research labs Entering into Ph.D. progra **M.Sc. Biochemistry Job Types Consultant - Clinical Biochemistry** Guest Lecturer - Biochemistry Assistant Professor - Biochemistry Technician - Biochemistry Reader - Physiology & Biochemistry Medical Laboratory Technician **Business Specialist – Bioscience**

Learning Outcomes: Biochemistry

At the conclusion of the degree program students will be able to:

- Develop and demonstrate an in-depth knowledge of a specific area of biochemical research, which may include (but is not limited to) protein, nucleic acid and/or membrane biochemistry, cancer and molecular immunology, computational and quantitative biology, etc.
- 2. Demonstrate independent and critical skills necessary to formulate specific experiments aimed at understanding molecular processes.
- 3. Gain the necessary experience and skills to train others in the performance of experiments.
- 4. Develop communication skills suitable to discuss scientific outcomes at a level for the layperson to understand but critical enough for peers. Typically, such training is developed through writing and editing scientific manuscripts, with input from a faculty advisor.
- 5. Deliver effective oral and written presentations of the results and conclusions of experimental work.
- 6. Be able to ask and answer questions within the research areas of Biochemistry.
- 7. Develop skills and abilities for effective teaching of Biochemistry in a course room setting.
- 8. Develop the skills and intellectual background to succeed at postdoctoral work in academics or in the commercial sector.
- 9. Demonstrate ethical conduct within the research process and the responsibilities of the scientist.

OUTCOME BASED EDUCATION Department of Applied Microbiology and Biochemistry

Program: M.Sc. Biochemistry

1. Mission

- To provide a learning environment that fosters problem-solving skills in the students through the use of cutting-edge biochemistry teaching.
- To help students develop their problem-solving abilities, career success, and to by providing a strong theoretical and practical foundation in a variety of teaching them about their rofessional and academic biochemistry discipline ethics-related obligations.
- To expose students to the most recent resources and technologies in the field biological chemistry.
- To offer projects based on research in the developing field of biochemical technology.
- To develop the human resource with sound theory and application in the an understanding of biology and the capacity to use information for the society as a whole
- 2. Vission
 - Generating top-notch students who are trained in the newest techniques and innovations and working to establish the institution as a global leader in the study of biochemistry.
 - To attain academic excellence in biochemistry by providing the students with in-depth knowledge, supporting research efforts, and meeting changing societal and industrial demands.
 - Being a Centre of excellence in the field of biochemistry is one of the organization's goals, which is supported by its mission and vision statements.

Programme Specific Qualification Attributes

Programme specific qualification attributes achieved through courses in the programme in terms of

- Knowledge and understanding level (K1 and K2)
- Application level (K3)
- Analytical level (K4)
- Evaluation capability level (K5)
- Scientific or synthesis level (K6)

Program Educational Objectives:

The program educational objectives (PEO) are the statement that describes the career and professional achievement after the program of studies (graduation/post-graduation) is known as the programme educational objectives (PEO). The PEOs are motivated by the mission statement's question (ii): "What is the purpose of the organisation?" PEOs can range in number from three to five

PEO1: should be well-versed in the field of biochemistry

PEO2: To offer the expert services to industry, research organization,

Institutes.

PEO3: To offer qualified consulting and research assistance to the pertinent organization in the area of super specialty

PEO4: choosing higher education, engaging in discipline and multidisciplinary research, and continuing to study throughout one's life. **PEO5:** To give moral leadership in both the professional and social spheres

Program Outcomes:

The statement of talents and abilities is contained in the programme outcomes (PO). POs are a declaration of the skills and knowledge a graduate or postgraduate will possess at the conclusion of their degree of study.

PO1: In depth understanding of the experimental procedures and foundational theoretical principles of biochemistry.

PO2: Biochemistry is used to Apply or apply the interface between issues relating to contemporary technology, health, and environmental concerns, on the one hand, and the history of biochemistry and natural science, on the other.

PO2: Capabilities for organizing and carrying out sophisticated chemical experiments and using structural-chemical characterization methods.

PO3: The ability to analyses certain occurrences theoretically, experimentally, or both **PO4:** The creation of novel scientific theories or the development of novel biochemistry research applications.

PO5: Recognize the need for organization, time management, planning abilities, and the capacity for independent work

PO6: Gains the capacity to analyse and resolve issues using facts from science.

PO7: Acquires comprehensive knowledge in the fields of immunology, immunotechnology, pharmaceutical biochemistry, medical biochemistry and endocrinology, genetics and metabolic diorders, molecular biology cancer biology and applied biotechnology, bio nanotechnology and infectious diseases, and computational biology.

PO8: Incorporate the growing significance of digital-based activity into your analysis, evaluation, and presentation of Biochemistry information.

PO9: Consider including the expanding importance of digital activities in your examination, analysis, and presentation of biochemistry data.

PO10: Acknowledge the need for designing, structure and time governance skills and the cognition to employment severally.

PO11: Demonstrate specific skills in analyzing, evaluating and biochemistry information, in particular incorporating the increasing importance of digital-based activity.

PO12: Gains an awareness of and appreciation for, the social and cultural context of the implications of biochemistry to gain knowledge and investigation.

CBCS- Structure of the programme

The programme structure comprises of two parts

Course Component	No. of	Hours of	Marks	Credits		
	courses	Learning/week				
	Part /	A (Credit Courses)				
Core courses	08	80	100	46		
Skill development	04	40	50	24		
course						

Skill Enhancement	02	20	100	08
Course				
Internal Elective (IE)	02	20	100	6
Course				(For each internal elective)
External Elective	02	36	50	8
Course (EE)				
Research	-	-	200	8
Pa	art B (Self-Le	arning Credit Cours	ses)	
Elective Foundation	3	36	50	6
courses				
Total	25	256	650	106

Curriculum structure for each semester as per your courses alignment

SEMESTER-I	Subject Code	Subject Type	Paper Title	Instru Hou		Total IH	Credits		Total Credits	E	xamin	ation N Marks		ım	Total Marks
				We	ek						Theor	y	Pract	ticals	
				Th	Pra		Th	Pra		IA	EA	Tot	EA	Tot	
	BCH	СС	Biochemistry of	4	5	10	4	2	6	20	80	100	50	50	150
	101		Biomolecules												
	BCH	CC	Immunology	4	5	10	4	2	6	20	80	100	50	50	150
	102														
	BCH	CC	Introduction to	4	5	10	4	2	6	20	80	100	50	50	150
	103		Microbiology												
	BCH	SC	Analytical	4	5	10	4	2	6	20	80	100	50	50	150
	104		Techniques												
			Total	16	20	40	16	8	24	80	320	400	200	200	600
		FC	Communicative	2		2	2		2			50			
			English												

Subject Type: CC – Core Course: Essential Course for the degree of M.Sc. Biochemistry

FC Foundation Course

SC- Skill Development course

EA –External assessment

SEMESTER- II	Subject Code	Subject Type	Paper Title	Instruction Hours /	Total IH	Credits	Total Credits	Examination N Marks		Total Marks
				Week				Theory	Practicals	

			Th	Pra		Th	Pra		IA	EA	Tot	EA	Tot	
BCH	SC	Enzymes and	4	5	10	4	2	6	20	80	100	50	50	150
201		its Applications												
BCH	СС	Molecular	4	5	10	4	2	6	20	80	100	50	50	150
202		Biology												
BCH	СС	Cell Physiology	4	5	10	4	2	6	20	80	100	50	50	150
203		and												
		Endocrinology												
BCH	IE	Food Safety &	4	5	10	4	2	6	20	80	100	50	50	150
204		Quality												
		Management/												
		Immuno												
		Technology &												
		Molecular												
		Signaling /												
		Bioinformatics												
		Total	16	20	40	16	8	24	80	320	400	200	200	600
	FC	Foundation	2		2	2		2			50			
		Course in												
		Computer												
		Applications												

Subject Type: CC - Core Course: Essential Course for the degree of M.Sc. Biochemistry

FC Foundation Course

SC- Skill Development course

IE –Internal Elective

SEMSTER-III	Subject	Subject	Paper Title	Instru	uction	Total	Credits		Total	Exa	minati	on Maxir	num N	larks	Total								
	Code	Туре			urs / eek	IH										Cre			Theor	у	Prac	ticals	Marks
				Th	Pra		Th	Pra	ts	IE	EA	Tot	EA	Tot									
	ВСН	IE	Genetic Engineering /	4	5	10	4	2	6	20	80	100	50	50	150								
	301		Animal Pharmaceutical Biotechnology / Molecular and Immuno Diagnostics/MOOCS																				
	BCH 302	СС	Intermediary Metabolism	4	5	10	4	2	6	20	80	100	50	50	150								
	BCH 303	СС	Nutritional Biochemistry	4	5	10	4	2	6	20	80	100	50	50	150								
	BCH 304	SC	Research Methodology	2	-	2	2	-	2	-	50	50	-	-	50								
		EE	External Elective	4	-	4		-	4	20	80	100	-	-	100								
			Total	18	15	36	14	6	24	80	370	450	150	150	600								
		FC	Gender Studies and Self Defense	2	-	2	2	-	2	-	-	50	-	-	-								

EXTERNAL ELECTIVE

SEMESTER- III	Subject Code	Subject Type	Paper Title	Ηοι	•	Total IH	Cre	dits	Total Credits	E	Exami	natior Ma	-	ximu	m	Total Marks
				We	eek					•	Theo	γ y	Ρ	ractio	als	
				Th	Pra		Th	Pra		IE	EA	Tot	IE	EA	Tot	
		EE	Quality	4	-	4	-	-	4	20	80	100	-	-	-	100
			Control and Laboratory													
			Maintenance													

Subject Type: CC – Core Course: Essential Course for the degree of M.Sc. Applied Microbiology. EE – External Elective: Basic Course Offered to students of others courses. Minimum

Strength to offer the course is 10 students

FC	–Foundation Course & & EA – External Assessment
IE	Internal Elective: Choice to the students to ont for one nero

SEMESTER- IV	Subject Code	ode Type Hours / IH		dits	Total Credits	Examination Maximum Marks						Total Marks				
				W	eek						Theo	ry		Practica	als	
				Th	Pra		Th	Pra		IE	EA	Tot	IA	EA	Tot	
	BCH 401	SE	Genomics & Proteomics	4	5	10	4	2	6	20	80	100	-	50	50	150
·	BCH 402	СС	Clinical Biochemistry	4	5	10	4	2	6	20	80	100	-	50	50	150
	BCH 403	SE	Techno Entrepreneurship & Bioethics	4	-	4	4	-	4	20	80	100	-	-	-	100
	BCH 404	RC	Project	-	16	16	-	8	8	-	-	-	50	150	200	200
		•	Total	12	32	40	12	12	24	60	240	300	50	250	400	600
	Total															2400

Subject Type: CC – Core Course & SE – Skill Enhancement Course EA- External assessment & RC- Research based course

CBCS- Scheme of Examinations semester wise structure

Examinations

There shall be four semester examinations: first semester examinations at the middle of the first academic year and the second semester examination at the end of the first academic year. Similarly, the third and fourth semester examinations shall be held at the middle and end of the second academic year, respectively.

Scheme for Evaluation and Execution Rules

Attainment Rules for Theory Courses

External	: 80 Marks
Internal	: 20 Marks
Total	: 100 Marks
Time	: 3 hours

The following procedure will be followed for Internal Marks:

Theory Papers Internal	
Average of two tests out of 2	: 10 marks
Seminar	: 5 mar
Assignment	: 5 marks
Total	: 25 marks

Question Paper Pattern (Theory)

Section	Approach	Mark pattern
А	100 to 400 words (Answer any four out of	4X5=20 (analytical type
	six questions)	questions)
В	1000 to 1500 words	5X12 =60 (Essay type
		questions)

Attainment Rules for Lab courses

Four practical for each semester

Each Practical : 50 Marks Practical Test : 40 marks Record : 5 marks

Viva-voce : 5 marks

Attainment Rules for Research Project

Internal evaluation	: 50 marks
Viva - voce	: 20 marks
Project Report	: 80 marks

Grading System Evaluation of performance of students is based on ten-point scale grading system as given below

		Ten Point Scale						
Grade of Marks	Grade Point	Letter Grade	Description					
75 - 100	7.5-10	0	Outstanding					
65 – 74.9	6.5-7.49	A+	Very Good					
60 - 64.9	6.0-6.49	A	Good					
55 – 59.9	5.5-5.99	С	Average					
50 – 54.9	5.0-5.49	D	Below Average					
45 – 49.9	4.5-4.99	Pass	Poor					
0 - 44	0-4.4	Fail	Fail					
ABSENT	AAA	Absent	ABSENT					

SUBJECT	COURSE	Р	Р	Р	Р	Р	P	Р	Р	Р	PO	PO	Р
NAME	OUTCOME	0	0	0	0	0	0	0	0	0	10	11	0
		1	2	3	4	5	6	7	8	9			12
			S	SEM	ESTI	ER-I							
BCH 101:	Overview on	\checkmark	\checkmark										
BIOCHEMIS	classification,												
TRY OF	structure and												
BIOMOLEC	function of												
ULES	carbohydrate												
	s, lipids,												
	proteins,amin												
	o acids ,												
	nucleic acids												
	and their												
	biological												
	significance												
	in the body												
	-												
	Through this	✓	\checkmark										
	course the												
	students are												
	exposed to												
	importance												
	of biological												
	macromolecu												
	les												
	They acquire	\checkmark	✓	\checkmark									
	knowledge in								1				
	the												
	quantitative												
	and												

	qualitative estimation of biomolecules They study the influence and role of structure in reactivity of biomolecules At the end of the course, the students have a thorough understandin g on the role of biomolecules and their functions	✓	✓	✓					
	Specify the significance and role of Vitamins and Porphyrin during metabolic activity in the body	~	~	V	•				
BCH 102: IMMUNOL OGY	Describe the fundamental mechanisms of humoral and cellular immunity, including innate and acquired immunity. Describe the cellular and molecular mechanism of lymphocyte production	V	✓ ✓	 ✓ 					

	activation								
	activation Understand the significance the Major Histocompati bility Complex in terms of immune response and transplantatio n, describe lymphocyte development and the expression of their receptors, an overview of hypersensitiv	✓	✓			✓	✓		
BCH 103: INTRODUC TION TO MICROBIO LOGY	hypersensitiv e reactions. Know about the basic aspects of microbiolo gy, different methods of isolation of microorgan ism, preservatio n and controlling Of microorgan Ism	✓	✓	×					
	Know the basis of microbial physiology with its biochemica l pathway and the	✓	•			✓	v		

ecology of the icrobes with eference to Extreme Ecosystem s.								
Know General bacteriology and microbial techniques for isolation of pure cultures of bacteria, fungi. Master aseptic techniques and be able to perform routine culture handling tasks safely and effectively.	✓	✓	✓					
Know the various Physical and Chemical growth requirements of bacteria and get equipped with various methods of bacterial growth measurement	V	✓	✓	•				

BIOCHEMISTRY OF BIOMOLECULES (CC)

Course Code: BCH 101 Marks: 100 Hours: L + T + P = C4 1 0 5

Course Objectives

The course contents are designed to gain knowledge about the Bio molecules such as Carbohydrates, proteins, amino acids, Vitamins, minerals and nucleic acids along with the basic principles of chemistry of Bio molecules . The learner will understand about the Biochemistry of Molecules and their applications in metabolism of macro molecules

Course Outcome

At the end of the course, the learner will be able to

CO1. Overview on classification, structure and function of carbohydrates, lipids, proteins,

CO2. amino acids , nucleic acids and their biological significance in the body

CO3. Classification of proteins and structure of proteins - primary, secondary, super secondary, tertiary and quaternary structures

CO4 Through this course the students are exposed to importance of biological macromolecules

CO5. They acquire knowledge in the quantitative and qualitative estimation of biomolecules

CO6. They study the influence and role of structure in reactivity of biomolecules

CO7. At the end of the course, the students have a thorough understanding on the role of biomolecules and their functions

CO8. Specify the significance and role of Vitamins and Porphyrin during metabolic activity in the body

Unit	Unit Title	Intended learning Ch	Hours of Instruction	
		(K1, K2)	(K3,K4,K5)	
I	Proteins	classification, structure and physiochemical properties, chemical synthesis of peptides – solid and liquid phase peptide synthesis	Structural organization, sequence determination and characterization of proteins. Conformation of proteins – Ramachandran plots. Denaturation of proteins.	12

Syllabus

II	Carbobydra	Classification chamical	nentidoglycan	10
II	Carbohydra tes	Classification, chemical properties of carbohydrates, Chemistry and biological roles of homo and heteropolysaccharides, Structural elucidation of polysaccharides	peptidoglycan, glycosaminoglycans, glycoproteins, Oligosaccharides – lectin interaction in biochemical processes. Biological applications of disaccharides and polysaccharides	12
III	Lipids	Classification of Lipids, Fatty acids and their physiochemical properties. Structure and properties of Prostaglandins. Fats and waxes, physicochemical properties and characterization of fats and oil	Structure, properties and biological roles of phospholipids and Sphingolipids. Chemistry and properties of Sterols and Steroids. Salient features of bacterial and plant lipids.	12
IV	Nucleic acids	Bases, nucleosides, nucleotides, physicochemical properties of nucleic acids Types of RNA. Structure of tRNA	cleavage of nucleic acids by enzymatic methods, non – enzymatic transformation of nucleotides and nucleic acids, methylation,. Three dimensional structure of DNA. Different forms of DNA – circular DNA and Supercoiling.	12
V	Vitamins and Porphyrins	Fat-soluble and water- soluble vitamins and their source, daily requirements, structure	biochemical functions and deficiency symptoms Structure and properties of porphyrins – hemoglobin , Chlorophyll and Cytochromes. Minerals	12

REFERENCES

Text Book

- 1. Harper's Biochemistry 26th ed. 2013. McGraw Hill.
- 2. Lehninger Nelson Cox, 2013. Principles of Biochemistry 4th ed. Freeman Publishers.
- 3. Stryer, Biochemistry, 4th Freeman, 2012
- 4. Zubay, Biochemistry, 4t ed. 2005. William c. Brown Publication
- 5. Biochemistry Vote.D Voet.J.G, 3rd edition, 2013, John Wiley & Sons, Inc.
- 6. The chemical reactions of living cells Metzler D.E. 2nd edition, 2011, Academic Press.
- Principles of Biochemistry Nelson D.L, Cox M.M. 2nd Edition, 2013, CBS publishers and Distributors Delhi.
- 8. Biochemistry Sathyanarayana U, 2014, Arunabha Sen Books & Allied (P) Ltd., Kolkata.
- 9. Text book of biochemistry West,E.S.,Todd,Masonand &Co.
- 10. J.L. Jain, Fundamentals of Biochemistry, 2009.

11. Eria E. Conn Paul. Stampf 2002. Outlines of Biochemistry. Wiley publications.

12. Practical Biochemistry – Sawhney (2000)

13. Experimental Biochemistry by -Vijay Deshpande&Beedu Sashidhar Rao

14. Medical Biochemistry by- M.D.Rafi

IMMUNOLOGY (CORE COURSE)

Course Code: BCH 102	Hours:	L +	T	+ P	= C
Marks: 100		4	1	0	5

Course Objective

The course contents are designed to provide students with knowledge on how the immune system works and to state the role of immune system, be able to compare and contrast humoral and cell mediated immune responses, to distinguish and characterize various immune cells, to understand the mechanism of antibody diversity, to understand the role of cytokines in immunity, to understand the significance of the major histocompatibility and to provide an overview of the interaction between the immune system and pathogens.

Course outcomes

CO1 The students learns about molecular basis of antigen recognition, hypersensitivity

reaction, antigen- antibody reactions

CO2 It is able to articulate the roles of innate recognition receptors (i.e. Toll-Like Receptors) in immune responses compare and contrast humoral versus cell-mediated immune responses.

CO3 Be able to distinguish various cell types involved in immune responses and **CO3**associated functions, role of CD4+ T helper cell lineages Th1, Th2, Th17, and regulatory T cell.

CO4 Be able to distinguish and characterize antibody isotypes, development, and functions, understand the role of cytokines in immunity and immune cell activation.

CO5 Understand the significance the Major Histocompatibility Complex in terms of immune response and transplantation, describe lymphocyte development and the expression of their receptors, an overview of hypersensitive reactions.

CO6 This study develops in the student an appreciation for principles of immunology and its applications in treating human diseases

CO7 Understand the cellular process involved in inflammation and immunity, hypersensitivity reactions

Unit	Unit Title	Intended lea	arning Chapters	Hours of
		(121 120)		Instruction
_		(K1, K2)	(K3, K4 & K5)	12
Ι	History and Scope of Immunology	Haemopoeisis, lymphoid, mononuclear, granulocytic, mast and dendritic cells. Origin and organization of primary and secondary lymphoid organs. Types of immunity, Cells and molecules involved in innate and adaptive	Non- specific immune factors, inflammation and phagocytosis, Nature and types of antigens, Haptens, antigen specificity, cross reactivity. Iso antigens, T- dependent and independent antigens, Super antigens and Adjuvants	

		immunity.		
II	Types, structure and properties of antibodies, Affinity and avidity of antibodies	Cell types involved in cell mediated immunity. Cell- mediated effector functions Origin, biology and maturation of 'B' and T Lymphocytes (B-dependent and T independent)	the synthesis of immune globulin chains, organization and rearrangement of light chain and heavy chain genes, Regulation of immunoglobulin synthesis –idiotypic network, class or isotype switching of antibody diversity and immunoglobulin gene super family	12
Π	Immune response genes and Structure and function of MHC antigens	Role of MHC in controlling the T-cell response, MHC restriction.	Triggering of immune response and tolerance Antigen processing and presentation, activation and differentiation of B and T cells, B and T cell receptors, Humoral and cell- mediated immune responses, primary and secondary immune modulation, clonal selection theory. Cytokines and their role in immune regulation.	12
IV	The complement system	Complement components, iological activity of complement components, classical and alternate pathways. Toll- like receptors, immune	Antigen and antibody interactions: Agglutination, precipitation, complement fixation, neutralization. Immuno- electrophoresis, immunofluorescence	12

		esponse during bacterial (tuberculosis), parasitic malaria) and viral (HIV) infections, monoclonal antibodies, antibody engineering	FACS, ELISA, RIA and immunoblotting, Hybridoma technology	
V	Hypersensitivity reactions	Antibody mediated type II, anaphylactic reactions, Antibody mediated, type II cytotoxic reactions	Immune complex reactions Type – III, T-cell mediated delayed type hypersensitivity Type-IV. Immunological tolerance and tolerance induction	12

Text Book References

- Advanced Concepts in Human Immunology: Prospects for Disease Control: Prospects for Disease Control 1st ed. 2020 Edition by Pooja Jain (Editor), Lishomwa C. Ndhlovu (Editor), Publisher : Springer; 1st ed. 2020 edition (August 13, 2020).
- Immunology: With STUDENT CONSULT Online Access 9th Editionby David Male MA PhD (Editor), R. Stokes Peebles Jr. MD (Editor), Victoria Male MA PhD (Editor), Publisher : Elsevier; 9th edition (July 15, 2020)
- Oxford Handbook of Clinical Immunology and Allergy (Oxford Medical Handbooks) 4th Editionby Gavin Spickett (Author), Publisher : Oxford University Press; 4th edition (December 30, 2019)
- Medical Immunology, 7th Edition 7th Editionby Gabriel Virella (Editor), Publisher : CRC Press; 7th edition (October 16, 2019)
- IMMUNOLOGY Paperback April 26, 2019by KANNAN I (Author), Publisher: MJP Publishers (April 26, 2019)
- Basic Immunology: Functions and Disorders of the Immune System 6th Editionby Abul K. Abbas MBBS (Author), Andrew H. Lichtman MD PhD (Author), Publisher : Elsevier; 6th edition (April 24, 2019)
- Immunology: An Introductory Textbook 1st Editionby Anil K. Sharma (Editor), Publisher : Jenny Stanford Publishing; 1st edition (March 5, 2019)
- 8. Cooper E.L. (1982) General Immunology, Pergamon press, N.Y.
- 9. Eli Benzamini Geoffry sunshine, Sidneyleskowitz (1966) Immunology a short course, 3rd edition, A John Wiley & Sons inc. publication
- 10. Nandinishetty (1999) Immunology introductory text book New Age international (p) Ltd. Publishers.
- 11. B.S.Malik (1996) A laboratory manual of Veterinary, Medicine CBS publishers.
- 12. Paul W.E. (ed). Fundamental Immunology.3rd edition Newyork: Raven Press
- Ivan M Roitt.1997 Essential Immunology 9th ed. Blackwell Scientific publ. Oxford.
- 14. Golub, E.S. (ed.) 1981. The cellular basis of the immune response, Sinauer Associates, Inc. Sunderland
- 15. Hobert, J. and Ian Mc Connell. The Immune system. Black well, 1986.
- 16. Stitles Fudenberg. Basic clinical Immunology. 8th ed. Lange Medical Publ. USA.

INTRODUCTION TO MICROBIOLOGY (CORE COURSE)

BCH 103 Max marks: 100

Course Objectives

The course contents are designed to gain knowledge about the different forms of bacteria, fungi, algae, protozoan's along with the basic principles of microbial taxonomy. The learner will understand about the microbial metabolism and microbes thriving in extreme environments.

CO1 Demonstrate theory and practical skills in microscopy and their handling techniques and staining.

CO2 Understand the basic microbial structure and function and study the comparative characteristics of prokaryotes and eukaryotes and also understand the structural similarities and differences among various physiological groups of bacteria/archaea.

CO2 Know various Culture media and their applications and also understand various physical and chemical means of sterilization.

CO2 Know General bacteriology and microbial techniques for isolation of pure cultures of bacteria, fungi. Master aseptic techniques and be able to perform routine culture handling tasks safely and effectively.

CO3 Know the various Physical and Chemical growth requirements of bacteria and get equipped with various methods of bacterial growth measurement.

Unit	Unit Title	Intended Learnin	Hours of Instruction	
		(K1, K2)	(K3, K4& K5)	
I	Principles of Microbiology	History of Microbiology, Basis for the classification of Bacteria- morphological, biochemical, metabolic and molecular criteria. Major Taxonomical groups of bacteria. MB Diversity	General properties of fungi, Mycoplasma (PPLO), Rickettsiae, Chlamydia, Actinomycetes, Archebacteria (extremophiles) and micro algae.	12
Π	Microbiological Techniques	Structure of prokaryotic and eukaryotic cell. Comparison of the structure and function of each component of Eubacterial cell and	Biosynthesis of bacterial cell wall and Phases of cell division. Sporulation: Structure of bacterial endospores, physiology and	12

		Archaebacteria	genetics of sporulation.	
III	Cytology	Structureofprokaryoticandeukaryoticcell.Comparison of thestructureandfunction ofeachcomponentofEubacterial cell andArchaebacteria	bacterial cell wall and Phases of cell division.	12
IV	Nutrition and Growth	Bacterial growth curve and factors influencing growth. Methods for estimation of bacterial growth. Batch , synchronous cultures and continuous culture methods.	Nutritional groups of bacteria (autotrophy and heterotrophy), Nutritional mutants - auxotrophs and their applications in metabolic studies, Carbon assimilation in bacteria, factors influencing growth (physical and chemical),	12
V	Auxotrophs Host parasite interactions	Recognition and entry processes of different pathogens like bacteria, viruses into animal and plant host cells, alteration of host cell behavior by pathogens	virus-induced cell transformation, pathogen- induced diseases in animals and plants, cell-cell fusion in both normal and abnormal cells.	12

TEXT BOOKS REFERENCE

- Microbiology: An Introduction 13th Edition, 2018 by Gerard Tortora (Author), Berdell Funke (Author), Christine Case (Author), Derek Weber (Author), Warner Bair III (Author).
- Microbiology: Laboratory Theory & Application, Brief 3rd Edition 3rd edition (January 1, 2016) by Michael J. Leboffe (Author), Burton E. Pierce (Author) Morton Publishing Company.
- Prescott's Microbiology 10th Editionby Joanne Willey (Author), Linda Sherwood (Author), Christopher J. Woolverton (Author), Publisher : McGraw-Hill Education; 10th edition (January 4, 2016).
- Brock Biology of Microorganisms (14th Edition) 14th Editionby Michael T. Madigan (Author), John M. Martinko (Author), Kelly S. Bender (Author), Daniel H. Buckley (Author), David A. Stahl (Author), Thomas Brock (Author), Publisher : Pearson; 14th edition (January 12, 2014).
- Microbiology (Lippincott's Illustrated Reviews) 3rd Editionby Cynthia Nau Cornelissen (Author), Bruce D. Fisher (Author), Richard A. Harvey (Author), Publisher- Lippincott Williams & Wilkins; 3rd edition (October 12, 2012).
- 6. Foundations in Microbiology 10th Editionby Kathleen Park Talaro (Author), Barry Chess (Author), Publisher : McGraw-Hill Education; 10th edition (February 20, 2017).

ANALYTICAL TECHNIQUES (SKILL DEVELOPMENT COURSE)

BCH 103 Max marks: 100

Course Objective

This skill based course will teach the students the various instrumentations that are used in the analytical laboratories. This course covers both fundamental and applications of the instruments that are routinely used for the characterization of biomolecules.

Course Outcomes

CO1. Design an analytical work flow to acquire the required data in fulfilling the research objectives, provides the student with detailed scientific information about the instruments, their merits and limitations.

CO2. The students learn specific topics including tools for describing central tendency and variability in data; statistical hypothesis testing and its application to group comparisons; issues of power and sample size in study designs; and random sample and other study types. Biostatistics tools make the students to interpret their experimental data in a systematic manner.

CO3. At the end of the course, the student has the basic knowledge on the theory, operation and function of analytical instruments.

Un it	Unit Title	Intended Le	arning Chapters	Hours of Instruction
11		(K1, K2)	K3, K4 & K5)	
Ι	Electrochemical	Principles of	Visualization of cells and	12
	and Microscopic	biophysical chemistry	sub cellular components	
	Techniques	pH, buffer, reaction	by light microscopy,	
		kinetics,	resolving powers of	
		thermodynamics,	different microscopes,	
		colligative properties.	microscopy of living	
			cells, scanning and	
			transmission microscopes,	
			different fixation and	
			staining techniques for	
			EM, freeze-etch and	
			freeze-fracture methods	

SYLLABUS

			for EM, Cryo -electron	
			microscopy and Confocal	
			microscopy.	
II	Centrifugation	Basic principle of	Role of centrifugation in	12
11	Centrinugation	1 1	separation of cellular	12
		centrifugation	fractions, viruses and	
		technique- Different	macromolecules Isolation of biomolecules such as	
		types of centrifuges	DNA, RNA and proteins	
		and their applications	from mammalian and bacterial cells	
		Preparative and	ouctorial cons	
		analytical		
		ultracentrifugation-		
		Differential and		
		Density gradient		
		methods		
III	Chromatography	Principles of	High Performance Liquid	12
	and Radio	chromatography- Thin	Chromatography, Gas Chromatography & and	
	Labeling	layer, paper, ion	affinity chromatography	
		exchange, gel	with examples.	
		permeation	Applications of Radioactive and Non-	
			radioactive labeling.	
			~	
IV	Electrophoresis and pectroscopy	-	Spectroscopy: UV/Visible, fluorescence, IR.	12
	and peer oscopy	principle and types-	Fundamentals of X-ray	
		Paper/cellulose	diffraction, NMR , Mass spectrometry and Flow	
		acetate, gel	Cytometry. ELISA and	
		electrophoresis-starch	RIA	
		gel, SDS PAGE,		
		Agarose and		
		isoelectrofocussing,		
		Types of blotting		
		techniques		
V	General	Freeze drying, speed	Distillation of aqueous and	
	Methods	vaccume concentrator,	non-aqueous solvents,	
		rotavapor, gel drying methods	filteration and dialysis, sonication (probe	
			(probe	

	sonicators, sonicators etc),	general	

PRACTICAL - I

PRACTICAL EXAM: 6 HRS / DAY: 1

PRACTICAL -1 BIOCHEMISTRY OF BIOMOLECULES and BIOABALYTICAL TECHQUES Course Code: BCH(P:101 &104) Marks: 100 Hours: L + T + P = C 0 0 5 4

Course Objectives

The learners will be able to gain adequate knowledge and acquire adequate skill to perform qualitative and quantitative analysis. To impart thorough knowledge and understanding of practical skills in handling of different equipments like Centri fuge, HPTLC, Spectrophotometry, Coloumn chromatograpy through isolation of plant pigments, separation of amino acids and protein sequence analysis.

Course Outcome

At the end of the course, learners will be able to:

CO1. Perform the various qualitative and quantitative techniques of analysis and study the isolation techniques

CO2. Competently isolted the different types of pigments presented in plant through analytical techquis.

CO3. Demonstrate knowledge and understanding of Biochemistry of Biomolecules and the means of applying in the diagnostic and therapeutic techniques and research.

CO4. Understand the safe working practice in an Biochemistry laboratory.

Unit	Unit Title	Intended Le	arning Chapters	Hours of
		(K1, K2)	(K3, K4 & K5)	Instruction
Ι	Qualitative	Identification of	Glucose, Arabinose,	12
	analysis for	Unknown sugars,	xylose, fructose,	
	Carbohydrate	Amino acids,	galactose, sucrose,	
	Amino acids,	lipids	maltose and lactose,	
	Lipids and	1	Tyrosine, Tryptophan,	
	Proteins		Cysteine, Arginine,	

SYLLABUS

			Histidine, Methionine,	
II	Quantitative	Assay of unknown	Assay of fructose and	12
	analysis for	bio molecules	prepare a clinical	
	Carbohydrate	from biological	significance of fructose	
	Amino acids,	samples	in the ketone body	
	Lipids and		formation. Calculation	
	Proteins		of Nutritive significance	
			of proteins and lipid	
III	Isolation		Starch from Potato	12
	and		Cholesterol from egg	
	purification		yolk	
	methods		Casein from Milk	
IV	Preparation		Measurement of pH in	12
	of buffers		biological fluids	
V	Separation	Principle involved	paper chromatography	12
	of amino	in	thin layer	
	acids,	chromatography,	chromatography	
	carbohydrat	HPLC	HPLC technique	
	es and lipids		Ion exchange and gel	
	by		filtration	
	chromatogra		chromatography	
	phy		paper electrophoresis	
VI	Microscopy	Phase contrast,		
		Dark Field,		
		Fluorescent		
		Microscopy		
		Principle and		
		Functions.		

References

- 1. Practical mannual of Vijay Deshponde
- 2. A practical laboratorymannual of Sadasivam amd Manikyam

PRACTICAL - II

PRACTICAL EXAM: 6 HRS / DAY: 1

PRACTICAL -II INTRODUCTION TO MICROBIOLOGY and IMMUNOLOGYCourse Code: BCH(P:102 & 104)Hours: L +T + P = CMarks: 1000 0 5 4

Course Objectives

The learners will be able to gain adequate knowledge and acquire adequate skill to perform different staining techniques, growth rate of

bacteria and biochemical test. To impart thorough knowledge and understanding of practical skills in immunology and means of applying these principles in diagnostic and therapeutic techniques and research

Course Outcome

At the end of the course, learners will be able to:

CO1. Carry out the different staining techniques of bacteria and study the growth rate of bacteria.

CO2. Competently cultivate bacteria in different types of media.

CO3. Demonstrate knowledge and understanding of immunology and the

means of applying in the diagnostic and therapeutic techniques and research.

CO4. Understand the safe working practice in an immunology laboratory.

CO5. Develop skills to design and usage of diagnostic kits.

Unit	Unit Title	Intended Le	arning Chapters	Hours of
		(K1, K2)	(K3, K4 & K5)	Instruction
I	Sterilization techniques and Preparation of Media		Autoclaving, heat sterilization, filtration, UV irradiation and chemical, Nutriant broth, Potato dextrose, Mcconky Agar etc.	12
II	Staining techniques and Isolation and cultivation of pure cultures	Isolation and cultivation of Bacteria Growth CurveGrowth rate and Generation Time	Gram Staining Spore Staining Lactophenol Cotton Blue Staining	12
III	Testing and the efficiency of disinfectant action		Dettol, phenol (Reidel – Walker test)	12
IV	Separation of serum and plasma Blood typing – A, B, O and Rh system. Enumeration of R.B.CEnumer ation of WBC Differential Leukocyte count		Calculation of total RBS, WBC and different structural findings of Leukocytes, Monocytes, basophills and Nutrophills	12

V	Precipitation test	Immunodiffusion, Radial immuno diffusion	12
VI	Enumeration of `T` and `B` cells	Enumeration of `T` and `B` cells by rosette formation	
V	Westrenblottinganddotblottechniques.	Antigen and Antibody identification	

References

1. Oxford Handbook of Clinical Immunology and Allergy (Oxford Medical Handbooks) 4th Editionby Gavin Spickett (Author), Publisher : Oxford University Press; 4th edition (December 30, 2019).

2. Medical Immunology, 7th Edition 7th Editionby Gabriel Virella (Editor), Publisher : CRC Press; 7th edition (October 16, 2019)

3. Laboratory exercises in Microbiology, John P.Harley, McGraw-Hill education - 2013.

4. Microbiology: Principles and Explorations, Jacquelyn G. Black, John Wiley &sons, 2015.

5. Foundations in Microbiology, Kathleen Park Talaro, Chess, McGraw-Hill education -2014.

SEMEST		P	P	P	P	P	P	P	P	P	DO	DO	P
SUBJECT	COURSE	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	Р
NAME	OUTCOME	0	0	0	0	0	0	0	0	0	10	11	0
		1	2	3	4	5	6	7	8	9			12
			S	EMI	ESTE	R-I							
BCH 201:	Define	\checkmark	\checkmark	\checkmark			\checkmark						
ENZYMES	enzyme												
AND ITS	structure and												
APPLICATIO	explain the												
NS	differences												
	between												
	enzymes and												
	normal												
	catalytic												
	substances.												
	Explain the												
	recognition of chemical												
	structures of												
	biological												
	cofactor and												
	coenzymes												
	express the												
	Important												
	coenzymes												
	and the groups												
	they transfer												
	explain heat,												
	pĤ ,												
	concentration												
	and the other												
	factors on the												
	effect of												
	activity												
	define enzyme												
	kinetics												
	recognize Km												
	The starter	-		✓	✓				✓				
	The study will	✓		~	*				▲			✓	
	provide an overview of												
	the key												
	enzymes key												
	currently used												
	in large scale												
	industrial												
	processes.												
	r												
	It helps the	\checkmark		✓	✓		1		✓			✓	1
	students to												
	learn the												
	significant												
	features of the												
	biochemical										1		

	catalysts. It helps the students to learn the								
	learn the methodology involved in assessing the enzyme activity and mechanism of enzyme action. It illustrates the enzyme catalysis, kinetics and regulatory aspects								
BCH 202: MOLECULA R BIOLOGY (CORE COURSE)	To study the major Biomolecules regulating the cell at molecular level based on the knowledge gained basic core papers	~	✓	•		✓		✓	
	Gain knowledge of basic mechanism of transcription and translation and distinguish the process in prokaryote and eukaryote organism	 Image: A start of the start of		 Image: A start of the start of		~			
	Understand DNA interacting protein and important domains which confer	 Image: A start of the start of		•	•	√			

	the activity. Significance of Plasmids and Transposons in microbial genetics. Gain ractical Skills independentl yin purification, handling of DNA. RNA and protein										
BCH 203: CELL PHYSIOLOG Y AND ENDOCRINO LOGY (CORE COURSE)	Cell biology: This course introduces the students to the basics of cell and its components. This gives them a strong foundation on the basic unit of life. At the end of the course, the student has a	✓	✓	 ✓ 	×	×		✓			
	strong foundation on the functions of the cell. Physiology: understand the functions of important physiological systems including the cardio- respiratory, renal, reproductive and metabolic systems;				✓	✓	✓				
	Explain the role of the pancreatic				•	✓	~				

BCH 204: FOOD SAFETY AND QUALITY MANAGEME NT SIGNALING (INTERNAL ELECTIVE)	endocrine cells in the regulation of blood glucose Identify the hormones released by the heart, kidneys, and other organs with secondary endocrine functions Acquire an understanding of relevance of food components Acquire an understanding of application and detection techniques in food.	~	✓	×				✓	
BCH: 204 IMMUNO TECHNOLO GY & MOLECULA R SIGNALING (INTERNAL ELECTIVE)	Understand the structure and function at the molecular and cellular level of the immune defence, provide the knowledge about the transfusion and transplantatio n immunologic al reactions able to provide an overview for polyclonal, monoclonal and humanized								

	antibodies									
	and									
	production of									
	hybridoma									
						\checkmark	√			
	To gain a	\checkmark				V	V		\checkmark	
	deep									
	knowledge									
	about the									
	auto immune									
	diseases and									
	Immune									
	deficiency									
	disorders,									
	describe									
	immunizatio									
	n/vaccination									
	mmunologica									
	1 disease and									
	immunothera									
	ру.									
	Stages of	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	
	mitosis and									
	meiosis,									
	highlighting									
	similarities									
	and									
	differences,									
	understand									
	the cancer									
	and cell									
	cycle.									
	eyere.									
BCH 204:	Aimed to	\checkmark	\checkmark	✓	\checkmark				\checkmark	
BIOINFOR	provide an									
MATICS	overview of									
(INTERNAL	various									
ELECTIVE)	bioinformatic									
	s tools,									
	databases									
	available and									
	sequence									
	analysis.									
	Retrieve									
	information									
	from									
	available									
	databases and									

use them for microbial identification s.						

SEMESTER - II BCH 201: ENZYMES AND ITS APPLICATIONS (SKILL DEVELOPMENT COURSE)

Course Code: BCH 201 Marks: 100 Hours: L + T + P = C4 1 0 5

Course Objectives

Students will have to write a small experimental project aiming to isolate and characterize an enzyme including its kinetic parameters. To this end students will have to search the best methods in scientific papers and discuss the scientific content of the papers used to achieve their goal.

Course Outcomes

CO1. At the end of this unit students must establish molecular structure/activity relationships and predict its implications in enzymes mechanisms.

CO2.This is fundamental to the acquisition of competences to solve problems with impact in daily life e.g., health and environment. Students should also acquire skills to initiate a research or industrial career (food, pharmaceutics or biotechnology) in the country or abroad

CO3. Define enzyme structure \cdot define differences between enzymes and normal catalytic substances

Unit	Unit title	Intended Learn	Hours of Instructi on			
		(K1, K2)	(K3, K4 &K5)	-		
I	Enzyme	Definition, Nomenclature, classification. Active site determination, transition state, Enzyme catalysis, enzyme specificity, Transformation of different forms of energy, Enzyme unit, specific activity and turnover number	Activation energy. Methods of enzyme assay and Purification. Ribozymes, Abzymes and DNA enzymes	12		
II	Enzyme	Chemical kinetics (Pre	Rate expression for			

	kinetics	steady state and steady state). Kinetics of single substrate enzyme catalyzed reactions, Michaelis – Menten equation, Lineweaver - Burk, Eadie – Hofstee and Hanes plots. Significance of Vmax, Km, Kcat, specificity constant (Kcat/Km). Bi-substrate reactions and Kinetics of multi-substrate reaction – Classification with examples	of allosteric enzymes, MWC and KNF models. Hill's equation and co-	
ш	Enzyme Catalysis and inhibitio n	Irreversible and reversible, Competitive, non competitive, mixed inhibition, suicidal inhibition and allosteric inhibition. Clinical uses of competitive inhibition.	Mechanism of enzyme action - general acid- base catalysis, covalent catalysis, role of metal ion in enzyme catalysis. Mechanism of reaction catalyzed by serine proteases – trypsin and chymotrypsin, carboxy peptidase, lysozyme, triose phosphate isomerase, ribonuclease ,Rotation al catalysis – ATPase	12
IV	Co factors and Isoenzy mes	Metal ions and Co enzymes (TPP, FADH2, NADH, PLP, Biotin, CoA and Co enzyme Q ₁₀) functions. PDH, Metal dependent and metallo enzymes. Zymogen- Covalent modification of enzymes	Isoenzymes. Enzyme immobilization: Methods of immobilization and application of immobilized enzymes	12
V	Industria l and clinical uses of enzymes	Industrial uses of enzymes - sources of industrial enzymes,	Clinical enzymology - anti-inflammatory agents, digestive aids. Therapeutic use of asparginase, streptokinase.	12

leather detergents and	industry, d cheese	
production.		

REFERENCES

TEXT BOOKS

- 1. Dixon and Webb. Enzymes 2009. Longmans.
- 2. Marangoni AG. Enzyme Kinetics. 2010, A Modern Approach John Wiley and Sons.
- 3. Palmer, T.Understanding Enzymes 2012, Prentice Hall.
- 4. Stryer, Biochemistry 2014. Freeman.
- 5. Zubay, Principles of Biochemistry, 2013. William C. Brown Publ.
- 6. Uhlig H. 2009, Industrial Enzymes and their Applications. John Wiley.
- 7. Whitehurst, R.J. 2010, Enzymes in Food Technology. CRC Press.
- 8. Fundamentals of Biochemistry Donald Voet, Judith Voet and Pratt, 2014,
- 9. Harper's Biochemistry Murray et al, 2013, Appleton and Lange Publishers.
- 10. Principles of Biochemistry with human focus Garrett and grisham, 2010, Harcourt College Publishers, Orlando, Florida USA.
- 11. Principles of Biochemistry Lehninger, Nelson and Cox, 2013, WH Freeman and Company, New York, USA
- 12. Biochemistry by Stryer. W. H. Freeman; 6 editions (2006).
- 13. Industrial enzymes and their applications, Uhling H., John Wiley
- 14. Practical Biochemistry by T Plummer
- 15. Practical Biochemistry J Jayaraman
- 16. Practical Biochemistry by Thimmaiah
- 17.

SEMESTER-II

BCH 202: MOLECULAR BIOLOGY (CORE COURSE)

Course Code: BCH 202 Marks: 100

Hours: L + T + P = C4 1 0 5

Course Objectives

Molecular biology deals with nucleic acids and proteins and how these molecules interact within the cell to promote proper growth, division, and development. It is a large and ever-changing discipline. This course will emphasize the molecular mechanisms of DNA replication, repair, protein synthesis etc.

At the end of this course students should be able to demonstrate a clear understanding of the facts and basic concepts of molecular biology which are covered in lectures, including:

- 1. To provide with the core principles of molecular biology.
- 2. To gain higher level thinking skills that is necessary for scientists.
- 3. This course should excite about basic science and its applications.

Course outcomes

CO1. Molecular Biology gives you in-depth knowledge of biological and/or medicinal processes through the investigation of the underlying molecular mechanisms.

CO2. Understanding of chemical and molecular processes that occur in and between cells. Your understanding will become such that you will be able to describe and explain processes and their meaning for the characteristics of living organisms.

CO3. Gain insight into the most significant molecular and cell-based methods used today to expand our understanding of biology.

Unit	Unit title	Intended Lear	Hours of Instructi on	
		(K1, K2)	(K3, K4 &K5)	UII
Ι	Genetic Material & Mutations	Nature of Genetic material: Evidence to prove DNA & RNA as genetic material. Organization of genome in Prokaryotes and Eukaryotes.	Mutations: Types of mutations, molecular basis of mutations, mutagenic agents, Evaluation of mutagens by Ames test. Site directed mutagenesis and its applications DNA repair: Photo reactivation, Excision repair, post replication, recombination and SOS repair	12
II	Genetic transfer & Recombinati on	Mechanism of genetic transfer in bacteria Transformation, Transduction, conjugation, mapping of bacterial chromosome by transformation, conjugation and Transduction Recombination: Homologous recombination, role of Rec proteins in recombination	mechanisms. Plasmids and Transposons: Types of plasmids, Natural and artificial methods of plasmid transfer, their significance and applications, Transposable elements in prokaryotes and eukaryotes, types of bacterial transposons – Insertional sequences, complex transposons, Mechanisms of transposition (Replicative and non replicative).	12
III	DNA	Replication of DNA,	Models of replication	12
	Replication	Mechanism and	of DNA, Replication	

		enzymology of	of E.coli chromosome,	
		replication. fidelity of		
		replication,	and yeast	
		extrachromosomal	chromosomal DNA	
		replicons	significance of	
			telomerases, synthesis	
			of telomers	
IV	RNA	RNA synthesis -	Control of cono	12
1 V			Control of gene	12
	synthesis,	(transcription factors	1	
	Processing	and machinery, RNA	-	
	and	polymerases,	translation level.	
	Regulation		Regulation of Gene	
		transcription and	Expression in	
		inhibitors of	prokaryotes. Levels	
		transcription.Post	of regulation,	
		transcriptional	clustered genes,	
		modifications - Nuclear		
		splicing capping,	concept, Negative and	
		elongation, and	positive regulation of	
		termination, RNA		
			Regulation of lac,	
		editing, splicing, and	arabinose, tryptophan	
		polyadenylation, RNA	operons. Global	
		transport.	regulatory responses,	
			stringent response of	
			regulation in small	
			molecules such as	
			ppGpp .	1.2
V	Translation	Genetic code	Protein targeting:	12
		deciphering, role of		
		RNA in protein		
		synthesis, structure of		
		ribosomes, aminoacyl	protein trafficking.	
		tRNA synthetase,		
		mechanism of protein		
		synthesis, inhibitors of		
		protein synthesis, post		
		translational		
		modifications.		

REFERENCES Text Book

- 1. William Hayes, Genetics of Bacteria and their viruses CBS Publisher, 2011
- 2. B. Lewin Gene X Oxford press, 2011
- 3. J.W. Dale, Molecular Genetics of Bacteria, 2006

4. Jeremy W. Dale Simon F Park, Molecular Genetics of Bacteria 4th Ed. John Wiley & Sons Ltd.,

2004

5. Twayman, R.M. Advanced Molecular Biology, Viva books Private Limited, 2019

6. Stanly R. Maloy, John E. Cronan, Jr. David Freifelder, Microbial Genetics, 2 ed. Narosa

Publishing House, 2000

- 7. Jogdand, S.N. Gene Biotechnology, Himalaya Publishing house, 2010
- 8. Essential Cell Biology Fifth Editionby Bruce Alberts (Author), Karen

Hopkin (Author), Alexander D. Johnson (Author), David Morgan (Author), Martin

Raff (Author), Keith Roberts (Author), Peter Walter (Author), Publisher : W. W. Norton &

Company; Fifth edition (July 1, 2019).

9. Molecular Cell Biology Eighth Editionby Harvey Lodish (Author), Arnold

Berk (Author), Chris A. Kaiser, Publisher : W. H. Freeman; Eighth edition (April 1, 2016)

10. Benjamin Lewin Genes X. Oxford University Press, New York, 2011.

11. David Freifelder George M. Malacinik, Essentials of Molecular Biology, Panima, 2012

12. G. Karp, Cell and Molecular Biology Concepts and Experiment, John Wiley, 1996.

13. W.H. Elliott and D C.Elliott, Biochemistry & Molecular Biology, Oxford University Press,

2012

14. L. Stryer, Biochemistry, Freeman & Company, 2013

15. Shivarama Sastry, Text Book of Molecular Biology, Macmillan India 2004

16. M.Morange, Molecular Biology, Oxford University Press, 1999

17. R.F. Weaver, Molecular biology, MC Graw Hill, 2000

18. R.M. Twyman, Advanced Molecular Biology: A Concise, Viva Books Pvt.Ltd., 2011

19. P.C. Turner, instant Notes in Molecular biology, Viva Books Pvt.Ltd.2008

20. Watson, 5th Edition, Molecular biology of the Gene, Addison Wesley, Longman, 1998

21. D.F.M. Ausubel, R. Brent D. Moor etal Short Protocols in Molecular Biology., John Wiley,

II SEMESTER

BCH 203: CELL PHYSIOLOGY AND ENDOCRINOLOGY (CORE COURSE)

Course Code: BCH 203 Marks: 100 Hours: L + T + P = C4 1 0 5

Course objective

Students will understand the structures and purposes of basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles. Students will understand how these cellular components are used to generate and utilize energy in cells. Students will understand the cellular components underlying mitotic cell division.

Course Outcomes

CO1. Demonstrate/illustrate how the homeostatic model applies to every endocrine system in normal physiology and disease.

CO2. Demonstrate/illustrate how every aspect of our physiology and behavior is directly controlled or modified by hormones using reproduction, growth, development, stress, and metabolism as examples.

CO3.Explain how biological structure is related to biological function for cells, organelles, and macromolecules

CO4. Describe the physiological relevance of basic biological processes discussed in this course, including how they are regulated by physiological signals, what their physiological consequences are, and how their dysregulation might result in disease states

Unit	Unit title	Intended Lear	Intended Learning Chapters		
		(K1, K2)	(K3, K4 &K5)	-	
I	Cellular organization, division and cytoskeletons Cell types	division - mitosis and	growth and cell cycle, cell motility -	12	

Syllabus

TT	C	Molecular sensitives (Manahana -11	10
II	Composition and structure of		Membrane channels and pups, ligand gated ion channels, Ionic	12
	cell	organization of lipids		
	membranes	and overview of	models of transport	
		membrane protein -		
		peripheral and integral fluidity of	Membrane biogenesis, cell- cell interactions,	
		integral, fluidity of membranes, different		
		membranes, different membrane models.	junctions, gap	
			membranes and	
			liposomes.	
III	Structure	Molecular	Structure of nerve	12
	and	organization of		
	organization	contractile systems	membrane potential,	
	of muscle	and molecular		
	cell, types of	mechanisms of	1 1 0	
	muscles	contraction and	impulse in	
		relaxation of muscle. Biochemical changes	unmyelinated and myelinated nerve	
		associated with muscle	fibers. Synapse –	
		contraction and	types of synapses,	
		relaxation.	transmission at	
			adrenergic and	
			cholinergic nerve	
			endings. Blood brain	
			barrier,	
			Neurotransmitters.	
			Physiology of vision.	
			Blood corpuscles and formed elements &	
			cardiac cycle.	
IV	Hormones	Definition.	Mechanisms of	12
		classification,	hormone action.	
		Hormone receptors-	Signal transduction	
		types, external features		
		and structure,		
		regulation of receptor		
V	Thyroid &	levels synthesis, secretion,	Thyroid diseases,	12
	Parathyroid	transport and	Hashimoto's	12
	hormones	metabolic fate. And	thyroiditis,	
		Biological action of		
		hormones	Parathyroid hormone,	
			Calcitriol,	
			Gastrointestinal	
			hormones, Location of	
			peptide producing	
			cells	

REFERENCES

- 1. Lodish, et al. 2012 Molecular Cell Biology 5th ed., WH Freeman.
- 2. Murray, et al. 2013. Harper's Biochemistry 26th ed. McGraw Hill.
- 3. Smith, et al. Principles of Biochemistry, Mamalian Biochemistry, 7th ed., McGraw Hill.
- 4. Alberts, et al. 2010. Molecular Biology of the Cell, 4th ed. Garland Sci.
- 5. De Robrtis and De Robertis, Cell and Molecular Biology, Lea and Febiger 8th Ed.
- 6. Cell Biology: A short course Bolsover S, 2004, 2nd edition John Willey & Sons.
- Molecular biology of cell Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Water, 2002, 4th edition, Garland Science.
- 8. Molecular Biology Weaver, 2011, 5th edition, Mc Graw Hill.
- 9. Molecular Cell Biology Levin Benjamin, 2000, 4th edition, WH Freeman & Company, NY
- 10. Introduction to Molecular Biology Paolella P, 1998, Mc Graw Hill
- 11. Cell and Molecular Biology Krap G, 2002, 3rd edition, John Wiley and Sonc. New York.
- 12. Cell Biology Singh S.P, Tomar B.S, 1993, Rastogi Meerut, Delhi.
- 13. Cell Biology, Genetics Molecular Biology and Evolution Verma O.P.S. and Agarwal O.V.K, 1986, s. Chand & Co. Madras
- 14. Text book of physiology and nutrition M. Swaminathan
- 15. Textbook of Medical Physiology -Guyton and Hall, 2012, 11th Edition
- 16. Murray, et al.Harper's Biochemistry, 2014. McGraw Hill.
- 17. Autin and Short,2010.Mechanisms of Hormone Action.
- 18. Smith, et al. Principles of Biochemistry Mammalian Biochemistry, 2012 McGra Hill.
- 19. Wilson and Foster, Williams Textbook of Endocrinology, 2010.
- 20. Textbook of Endocrinology by Hadley, 2009.
- **21.** Textbook of Physiology by Guyton 2009.

II SEMESTER

BCH 204: FOOD SAFETY AND QUALITY MANAGEMENT SIGNALING (INTERNAL ELECTIVE)

Course Code: BCH 204 Marks: 100 Hours: L + T + P = C4 1 0 5

COURSE OBJECTIVES

To prepare graduates for careers in the national and international food chain, e.g. food businesses, consultancy, research and development. To equip graduates with the knowledge and skills that will enhance their employability. To enrich graduates understanding of the dynamics of food safety and quality management systems and the context under which they operate at national and international levels.

COURSE OUTCOMES

CO1: Explain the application of food quality and food safety system

CO2: Identify the hazard of the food chain to ensure food safety

CO3: Examine the chemical and microbiological quality of food samples

CO4: Detect the adulteration in food samplesCO5: Review of legislative approaches for the management of food safety SYLLABUS

Unit	Unit title	Intended Lear	Hours of Instructi	
		(K1, K2)	(K3, K4 &K5)	on
Ι	Microbiology of foods	Microbiology of foods and food safety. Factors affecting the growth of microorganisms in	Roleofmicroorganismsinfermentedfoodsandfoodindustry.	12
		food	important fermentation products	
II	Food safety	Food safety and importance of safe food. Factors affecting food safety – Physical, Chemical and Biological. Recent concerns of food safety	Food safety and food service establishments – food safety measures – hygiene and sanitation in food service establishments,	12
III	Food adulteration	Food adulteration – common adulterants, classification of adulterants		12
IV	Food packaging	Food packaging – significance and function – classification of packaging material – packing methods – interaction between packaging and food – toxicity hazards. Packaging laws and regulations.	Biodegradable materials and environmental issues – labeling requirements, nutritional labeling and	12
V	Risk analysis	Risk analysis – HACCP – A food safety assurance system, Food regulations	Food regulations, standards and quality control. Prevention of food adulteration. Consumer protection Act, 1986 – regulations related to genetically modified foods.	12

REFERENCES TEXT BOOKS

1. Food Microbiology (5th ed.) 2017. by W.C. Frazier & D.C. Tata Mc Graw Hill publishing house, New Delhi..

2. Adams, M.R. Food Microbiology fundamentals & Frontiers 2018 American .Society for Microbiology.5th ed. Washington. D.C.

3. James M.Jay.5th ed.2006. Modern food Microbiology. Food Science text series. Springer publication, US.

II SEMESTER BCH: 204 IMMUNO TECHNOLOGY & MOLECULAR SIGNALING (INTERNAL ELECTIVE)

Course Code: BCH 204 Marks: 100 Hours: L + T + P = C4 1 0 5

COURSE OBJECTIVES

To enable candidates by imparting updated analytical and hands-on skills to use and implement technological developments related to advanced and potential areas involving molecular diagnostics, automated systems of diagnosis, immunoblotting technology, upstream or downstream processing and nanotechnology with scope for upskilling upto future technologies so as to contribute effectively for Research & Development leading to patenting and publishing.

COURSE OUTCOMES

CO1. understand the basic principles of signal transduction mechanisms, in particular the concepts of response specificity, signal amplitude and duration, signal integration and intracellular location

CO2. Describe immunization/vaccination, immunological disease and immunotherapy

CO2. plan, carry out and present achieved results of immunological serum analyses by means of enzyme coupled immune adsorbent analysis (ELISA)

CO3 Discuss immunological techniques and their applications in biotechnical industry.

CO4. Describe immunization/vaccination, immunological disease and immunotherapy

SYLLABUS

Unit	Unit title	Intended Learn	Hours of Instructi	
		(K1, K2)	(K3, K4 &K5)	on
Ι	Cell cycle and Cancer biology	Mitosis and meiosis, their regulation, steps in cell cycle, and control of cell cycle.Check points in cell cycle, regulation and control of cell cycle, inhibitors	Genetic rearrangements in progenitor cells, oncogenes, tumor suppressor genes, cancer and the cell cycle, virus-induced cancer, metastasis,Angiogenes is, interaction of cancer cells with normal cells, apoptosis, therapeutic interventions of uncontrolled cell growth.	12
Π	Cell signaling	Hormones and their receptors, cell surface receptor, signaling through G-protein coupled receptors, signal transduction pathways, second messengers, regulation of signaling pathways, bacterial and plant two- component signaling systems.	Quorum sensing in bacteria	12
Ш	Immunodefic iency disord ers	Auto immunity – Pathogenesis of auto immune disease	Disease with positive HLA associations, systemic lupus erythematus, multiple sclerosis, rheumatold arthritis, auto – immune haemolytic anemia, Myasthenia gravis, Graves' disease, Type 1 Diabetes Mellitus, Hashimotos thyroiditis, treatment	12

			of auto immune disease.	
IV	Transfusion immunology	ABO system, Rh antigens, Rh disease, MN blood group, Kell and duffy blood groups	Selection of donors by cross matching. Transfusion reactions – Haemolytic, febrile and allergic reactions. Transfusion transmitted infections.	12
V	Immunoprop hylaxis	Types of vaccines – Conventional (BCG, Salk, Influenza, DPT) DNA vaccines, Glycoconjugate vanccines, Deletion vaccines, DC based vaccines	-	12

References

Text Books

- Basic Immunology: Functions and Disorders of the Immune System 6th Edition by Abul K. Abbas MBBS (Author), Andrew H. Lichtman MD PhD (Author), Shiv Pillai MBBS PhD (Author), Publisher : Elsevier; 6th edition (April 24, 2019)
- Roitt's Essential Immunology (Essentials) 13th Edition by Peter J. Delves (Author), Seamus J. Martin (Author), Dennis R. Burton (Author), Ivan M. Roitt (Author), Publisher : Wiley-Blackwell; 13th edition (January 17, 2017)
- 3. Introductory Immunology, 2nd: Basic Concepts for Interdisciplinary Applications 2nd Edition, Publisher : Academic Press; 2nd edition (February 27, 2019)
- Clinical Immunology: Principles and Practice 5th Edition by Robert R. Rich MD (Author), Thomas A Fleisher MD FAAAAI FACAAI (Author), William T. Shearer MD PhD (Author), Harry Schroeder (Author), Anthony J. Frew MD FRCP (Author), Cornelia M. Weyand MD PhD, Publisher : Elsevier; 5th edition (March 27, 2018)
- 5. Hancock, J. T. Cell signalling. 2a ed. Oxford University Press, 2005.

II SEMESTER BCH 204: BIOINFORMATICS (IE)

Course Code: BCH 204 Marks: 100

Hours: L + T + P = C4 1 0 - 5

Course objectives

Bioinformatics is the science of storing, extracting, organizing, analyzing, interpreting and using information. The approaches to the discipline of bioinformatics incorporate expertise from the biological sciences, computer science and mathematics. The major in bioinformatics is designed for students interested in molecular biology and genetics, information technologies and computer science. Bioinformaticists are involved in the analysis of the human genome, identification of targets for drug discovery, development of new algorithms and analysis methods, the study of structural and functional relationships, and molecular evolution.

Course out comes

CO1. Knowledge and awareness of the basic principles and concepts of biology, computer science and mathematics

CO2. existing software effectively to extract information from large databases and to use this information in computer modeling

CO3. problem-solving skills, including the ability to develop new algorithms and analysis methods

CO4. an understanding of the intersection of life and information sciences, the core of shared concepts, language and skills the ability to speak the language of structurefunction relationships, information theory, gene expression, and database queries.

Unit	Unit title	Intended Learning Chapters		Hours of Instructi on
		(K1, K2)	(K3, K4 &K5)	UII
Ι	Introduction	Types of databases,	Phylogenetic analysis:	12
	to Biological	Nucleic Acid Sequence	Phylogenetic trees,	
	Databases:	databases, Protein	Methods of analysis	
		sequence databases.	(Distance method,	
		Structure databases:	Neighbor joining	
		Protein data bank	method), Phylogenetic	
		(PDB), visualizing	tree evaluation -	
		structural information	PHYLIP, MEGA	
		(RasMol) Prediction		
		analysis of DNA		
		sequences (GRAIL;		
		FGENES, Genescan)		
		Sequence alignment		
		(FASTA, BLAST and		
		CLUSTALW)		

IIProtein Structure and predictionProtein structure analysis, Secondary analysis, Motifs, profiles, patterns and fingerprints.Sequence based protein prediction: Homology or comparative modeling: Remote homology (Threading), Protein function prediction.12IIIMolecular ModelingMolecular structures & Internal energy.Areas of application- single molecule calculation, assemblies of molecular its application.12IVQuantum mechanicsEmpirical force field modelselectronicMolecular force field modelselectronicMolecular mechanics, energy calculation,12	Structure and prediction III Molecular	11				12
and predictionanalysis, profiles, patterns and fingerprints.or or modeling: modeling: Protein proticion.IIIMolecular ModelingMolecular structures & Internal energy.Areas of application- single of molecule. Introduction to molecular graphics & its application.12IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12	and predictionIIIMolecular		analysis,	Secondary	prediction: Homology	
predictionprofiles, patterns and fingerprints.modeling: Remote homology (Threading), Protein function prediction.IIIMolecular ModelingMolecular structures & Internal energy.Areas of application- single molecule calculation, assemblies of molecules. Introduction to molecular graphics & its application.12IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12	prediction III Molecular					
IIIMolecular ModelingMolecular structures & Internal energy.Areas of application- single calculation, assemblies of molecules. Introduction to molecular graphics & its application.12IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12	III Molecular		-		-	
IIIMolecular ModelingMolecular structures & Internal energy.Areas of application- single of molecules. Introduction to molecular graphics & its application.12IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12					e	
IIIMolecular ModelingMolecular structures & Internal energy.Areas of application- single molecule calculation, assemblies of molecules. Introduction to molecular graphics & its application.12IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12			fingerpri	nts.		
IIIMolecular ModelingMolecular structures & Internal energy.Areas of application- single molecule calculation, assemblies of molecules. Introduction to molecular graphics & its application.12IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12						
ModelingInternal energy.single calculation, assemblies of molecules. Introduction to molecular graphics & its application.IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12					prediction.	
ModelingInternal energy.single calculation, assemblies of molecules. Introduction to molecular graphics & its application.IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12						
Image: Instrument of the second construction of the second calculation, assemblies of molecules. Introduction to molecular graphics & its application. IV Quantum mechanics Empirical force field modelselectronic Molecular mechanics, energy calculation,	Modeling	Ш				12
Image:			Internal	energy.	single molecule	
Image: Introduction of the second					calculation, assemblies	
Image: Introduction of the second					,	
IV Quantum modelselectronic Empirical force field modelselectronic Molecular mechanics, energy calculation, 12						
IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12						
IVQuantum mechanicsEmpirical force field modelselectronicMolecular mechanics, energy calculation,12						
mechanics modelselectronic energy calculation,						
	•	ſV	1			12
	mechanics					
structure calculations, Bond stretch, angle			structure	calculations,	Bond stretch, angle	
abinitio, semi-empirical bending, torsion			abinitio,	semi-empirical	bending, torsion	
and density fraction angles, vanderwaal's			and de	nsity fraction	angles, vanderwaal's	
theory calculations interaction, etc),			theory ca	lculations	interaction, etc),	
Molecular dynamics					Molecular dynamics	
V Molecular Introduction to Geometry bases, 12	V Molecular	V	Introduc	tion to	Geometry bases,	12
docking & its molecular docking, Energy bases, fragment	docking & its		its molecula	r docking,	Energy bases, fragment	
statistics Docking programs: based, descriptor	statistics		Docking	programs:	based, descriptor	
Flexible & rigid body method, grid			Flexible	& rigid body	method, grid	
docking. Method.Evaluation of			docking.		Method.Evaluation of	
docked prediction.					docked prediction.	
Automated docking.					Automated docking.	
Protein-ligand docking,					e	
Regression analysis,					0	
Fourier correlation						
transfer algorithm,					transfer algorithm,	
RMS Deviation.					-	

REFERENCES

- 1. Understanding Bioinformatics by Market Zvelebil , Garland Science; 1 edition (April 30, 2007)
- 2. K. Attwood & D.J. Parry-Smith 1999. Introduction to Bioinformatics Pearson Education Asia
- 3. Stephen Misener S.A. Krawez 2000. Bioinformatics: Methods and Protocol
- 4. R. Durbin, S. Eddy.A. Krogh & G. Mitchson 1998. Biological sequence analysis Cambridge University Press
- 5. C.P. Freidman & J.C. Wyatt. 1997 Computers and machine Evaluation methods in Medical information. Springer Veriag, New York
- 6. M.J.Bishop& C.J. Wyatt, 1997 DNA and Protein structure analysis: A practical approach, Oxford University Press
- 7. R.M. Kolodner, 1997 Computer in Health care: Computerising large integrated health networks. Springer Veriag, New York.

SEMESTER-II PRACTICAL - I PRACTICAL EXAM: 6 HRS / DAY: 1

PRACTICAL -1 ENZYME AND ITS APPLICATIONS and FOOD SAFETY AND QUALITY MANAGEMENT Course Code: BCH(P:201 &204) Hours: L + T + P = C

Course Code: BCH(P:201 & 204)Hours: L + 1 + P = CMarks: 100005

Course objectives

Determination of the rate of the reaction (MM equation) and various techniques to study it. Students will also learn factors affecting rate of reactions (Inhibitors, pH, temp). Students will also learn the assay of enzyme activity.Learn principle behind enzyme isolation and Various purification techniques.

To Emphasis the various properties of the raw material used in food processing, different processing technologies required in transforming them into quality food products and material handling equipment involved in food processing operations

Course outcomes

CO1. Acquiring training to estimate activity of enzymes. \Box

CO2. To determine pH optimum, Km and Vmax of enzymes and to analyse enzyme kinetics. \Box

CO3. To determine optimum temperature for the activity of an enzyme.

CO4. To understand about the important parameters of food safety systems.

CO5. To get know International food laws

CO6. To know about history of food law and standards 4. Can become advisor to the

Unit	Unit Title	Intended Learning Chapters		Hours of
		(K1, K2)	(K3, K4 & K5)	Instruction
Ι	Assay of enzyme activities from Biological samples		Amylase from saliva Urease from Horse gram Acid phosphatase from potato Alkaline phosphatse from serum Trypsis SOD, Invibitor Some activators and inhibitors	122
Π	Study of enzyme kinetics	Effect of factors on enzyme activity	A. Effect of substrate concentration on enzyme activityB. Effect of enzyme concentration on enyme activityC. Effect of pH on enzyme activityD. Effect of temperature on enzyme activity.	12

	Enzyme purification by 3 or 4 steps	E. Effect of activators and inhibitors on enzyme activityAcetone precipitation Ammonium sulphate fractionation Electrophoresi	12
IV	Determinatio n of quality of food	fungal and yeast count in a given food sample. quality of milk sample of methylene blue reductase test Detection of number of bacteria in milk by breed count	12
V	Determinatio n of food adultarants	presence of sugar in honey Detection of NaHCO3 (chalk) in Flour. Check the presence of Vanaspati and Rancidity in the ghee Metanil yellow in a given food sample.	
VI	Food processing	Analysis of air of processing facility for microbial load	

REFERENCES

- 1. Food Microbiology (5th ed.) 2017. by W.C. Frazier & D.C. Tata Mc Graw Hill publishing house, New Delhi..
- 2. Adams, M.R. Food Microbiology fundamentals & Frontiers 2018 American .Society for Microbiology.5th ed. Washington. D.C. 3. James M.Jay.5th ed.2006. Modern food Microbiology. Food Science text series. Springer
- publication, US.
- 4. Text book of biochemistry by thimmaiam

SEMESTER-II PRACTICAL - II PRACTICAL EXAM: 6 HRS / DAY: 1

PRACTICAL -1 MOLECULAR BIOLOGY and CELL PHYSIOLOGY AND ENDOCRINOLOGY

Course Code: BCH(P:202 & 203) Hours: L + T + P = C Marks: 100 0 5 4

Course objectives

Demonstrate an understanding of the principles, and have practical experience of, a wide range of biochemical techniques (e.g. basic molecular biology, cell biology and microbiology methods, spectrophotometry,

Course outcomes

CO1. Students will learn the to isolate RNA, DNA, total nucleic acids and total RNA from bacteria, yeast and plant tissues.

Unit	Unit Title	Intended	Learning Chapters	Hours of
		(K1, K2)	(K3, K4 & K5)	Instruction
Ι	Cell cycle and cell division		Mitosis and meiosis	122
II	Extraction of genetic material		DNA from plant leaves. DNA from animal tissue. Vitamin D2 and D3	12
III	Isolation and			
IV	Purification and estimation		serum globulin	12
V	Induction of mutation in bacteria using UV light, photoreactivation, chemical mutagens and Ame`s test			
VI	Transformation, Transduction and Conjugation		Strepptomycinmutantresistantbygradientplate techniqueLethalitycurveconstruction	

SUBJECT	COURSE	P	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	P
NAME	OUTCOME	0	0	0	0	0	0	0	0	0	10	11	0
	00100112	1	2	3	4	5	6	7	8	9			12
		<u> </u>	SI		STEF		-	1			1	1	L
BCH 301 GENETIC ENGINEER ING (IE)	To provide students with Conceptual knowledge on emergence of recombinant DNA technology from knowledge gained in biochemistry, genetics, cell biology and molecular			EME	STEF	<u>x-III</u>							×
	biology Overview of the important techniques used in sequencing, amplification and cloning of DNA	×						✓	✓ ✓			✓	
	Gain knowledge on the significance of important enzymes and cloning. Able to Importance of different type of vectors available and basis for their construction and selection.			✓					•		×		Ý

SEMESTER-III

	Understand the major issues in heterlogous expression of gene and strategies employed to overcome Conceptual knowledge on ways to maximize the expression in prokaryotic and eukaryotic		~		•				✓	
BCH 301 ANIMAL PHARMAC EUTICAL BIOTECHN OLOGY	systems. Providing students with a theoretical and practical understanding of animal biotechnology	~	✓		*				V	
	Describe how genes are expressed and what regulatory mechanisms contribute to control of gene expression.	~	✓		✓		~		✓	
	Describe basic principles and techniques in genetic manipulation and genetic engineering, describe gene transfer technologies	~			~			✓	✓	

	for animals and animal cell lines.												
BCH 301 MOLECUL AR AND IMMUNO DIAGNOST ICS	To explain the available molecular, genomic, proteomic and metabolomics diagnostic procedures available for various diseases		~		•		•				✓		
	To interpret certain molecular reasons behind the certain hereditary diseases		~	✓			✓		V	✓			
	To learn the technologies available and lacuna for the non-cultured and slow growing pathogens		~		✓	•				~			V
	To explain the available molecular, genomic, proteomic and metabolomics diagnostic procedures available for various diseases	~					•	•	V		V	V	
BCH 302: INTERMEDIA RY METABOLIS M (CC)	Understand the differences between anabolic and	~					✓	✓	✓		•	•	

	metabolism may lead to disease, and illustrate with selected examples										
BCH 303: NUTRITIO NAL BIOCHEMI STRY (CORE COURSE)	The paper provides the structural and functional role of cell organelles and cell membrane at the biological level.	✓	~	✓	✓					•	
	Students will be exposed classification, biochemical and required quantities of nutrients in diet.	✓	~	✓	✓						
	It helps students to understand the nutritive roles of macro and micro nutrients.	√	~	~	~						
(Skill Development Course) RESEARCH METHODO LOGY	Demonstrate the ability to choose methods appropriate to research aims and objectives	√	~	✓					✓		•
	Understand the limitations of particular research methods			~	•	 Image: A start of the start of		✓		•	
	Develop skills in qualitative and quantitative data analysis		~			~	✓		✓	•	

	1									
	and									
	presentation Develop advanced		✓		~	✓		✓	✓	
	critical thinking skills Demonstrate enhanced writing skills									
BCH 304: QUALITY CONTROL/ LABORAT ORY MAINTENA NCE(EXTE RNAL ELECTIVE)	differences between quality control and statistical quality control,Determ ine several quality concept,Define Quality Assurance	•	✓	✓			~		✓	×
	System and Total Quality Management,E xpress the main attributes of Quality Assurance System, Define the Total Quality Management, Use the Problem Solving Techniques	✓	✓	~			~		✓	
	Calculate, analyse and interpret quality costs, Analyse Measurement System	•	✓	•	•		•		✓	•

III SEMESTER GENETIC ENGINEERING (IE)

Course Code: BCH 301 Marks: 100 Hours: L + T + P = C4 1 0 5

Course Objective

The objective of this course is to provide an insight into the fundamentals of genetics and cloning technology. Further this course also deals with the understanding between prokaryotes and eukaryotes genetic system.

Course outcomes

CO1. To provide students with Conceptual knowledge on emergence of recombinant DNA technology from knowledge gained in biochemistry, genetics, cell biology and molecular biology.

CO2. Overview of the important techniques used in sequencing, amplification and cloning of DNA

CO3. Gain knowledge on the significance of important enzymes and cloning. Able to Importance of different type of vectors available and basis for their construction and selection.

CO4. Understand the major issues in heterlogous expression of gene and strategies employed to overcome Conceptual knowledge on ways to maximize the expression in prokaryotic and eukaryotic systems.

CO5. Study the application of r DNA in various fields benefitting mankind. Gain practical experience in amplification and isolation of gene fragments and cloning. Use of *insilico* tools to design primers. Generation of restriction maps and identification of genes

Unit	Unit Title	Intended lear	ning chapter	Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Tools in r-DNA	Nucleic acid	Nick translation,	12
	Technology	sequencing –	Random priming,	
		Maxam Gilbert,	Radioactive and	
		Dideoxy methods,	non-radioactive	
		Automated DNA	nucleic acid probes,	
		sequencing ,	Amplification of	
		Chemical Synthesis	DNA by PCR and	
		of DNA by	its variants. DNA	
		phosphoramidite	fingerprinting	
		method. Labeling of	techniques –	
		DNA	Southern blotting,	
			RFLP, RAPD,	
			AFLP and next	
			generation	
			sequencing	

Syllabus

			methods, Aptamers and molecular beacons	
Π	Cloning vehicles and Enzymes	Cloning vehicles: Plasmid, bacteriophages, cosmid, phagemids, yeast shuttle and viral vectors. T1 plasmids, binary vectors, bacterial and yeast artificial chromosomes. methods of plasmid transfer.	Enzymes used in molecular cloning – Restriction and modification enzymes, DNA polymerases, S1 nuclease, BAL 31 nuclease, BAL 31 nuclease, polynucleotide kinase, ligases, topoisomerases, phosphatases, methylase, reverse transcriptase.	12
III	Cloning in bacteria	Core techniques of gene manipulation, Construction of c- DNA and genomic libraries. Generation of DNA fragments.	Isolation and purification of RNA, DNA (genomic and plasmid), Introduction of cloned genes into host, Screening and detection of recombinant clones – genetic and immunochemical methods.	12
IV	Expression in prokaryotes	Expression of cloned genes in prokaryotes, Gene expression ,factors influencing gene expression of cloned genes. Problems associated with heterologous gene expression.	Design of vectors for the over expression of recombinant proteins: selection of suitable promoter sequences, fusion protein tags, protease cleavage sites and enzymes, Inducible expression systems; Expression vectors (pET-based vectors pBAD vector), Protein purification, His-	12

			tag , GST-tag , Inclusion bodies , Methods to reduce formation of
V	Expression in Eukaryotes	Principles in maximizing gene	inclusion bodies. Antisense technology -Gene silencing
		expression, Baculovirus and pichia vectors system, Gateway	e
		cloning system.Methods for analysis of gene	
		expression at RNA and protein level using reporter genes	Medicine. CRISPR
		such as (Chloramphenicol Acetyl Transferase)	
		(CAT), "Luciferase, β - galactosidese GUS,GPF etc.).	

Reference Text book

- 1. R.W. Old S.B. Primrose, Principles of Gene manipulation: An introduction to
- 2. Genetic Engineering, 6th Edition, Blackwell Scientific, 2000
- 3. S.B. Primrose Principles Of Gene Manipulation And Genomics 7th Edition 2014.
- 4. James D. Watson, A. Baker Tania, et al Molecular Biology of the Gene 2017
- 5. P. Karanfilska, Dijana & P, Zoran & Stankovic, Bratislav. Recombinant DNA Technology and Genetic Engineering. 2015.
- 6. E.L. Winnacker, from Genes to Clones Introduction of gene technology VCH Publishers, 1998
- 7. A.N.Glazer, H.Nikaldo, Microbial Biotechnology. W.H. freeman, 2008
- 8. J.M. Walker, E.B.Gingold, Molecular Biology and Biotechnology, Panima Publishers, 2000
- 9. B.R.Glick and J.J. Pasternak, Molecular Biotechnology, Principles and applications of recombinant DNA, Panima Publishers 2015
- 10. S.B. Primrose, Molecular Biotechnology, 2019.
- 11. T.A. Brown, Gene Cloning and DNA Analysis: An Introduction 2020
- 12. F.M. Ausuble, R.Brent R.E. Kengston, Short Protocols in Molecular biology 4th edition John Wiley 2002
- 13. Sarnbrook J.et al Molecular cloning A Laboratory Manual vol.1 II & III Cold Spring Harbor Laboratory Press, 2001.
- 14. Joseph F. Sambrook and David Russell Condensed Protocols from Molecular Cloning: A Laboratory Manual 2006

III SEMESTER ANIMAL PHARMACEUTICAL BIOTECHNOLOGY(IE)

Course Code: BCH 301	Hours: $L + T + P = C$
Marks: 100	4 1 0 5

Course Objective

Animal biotechnology is a branch of biotechnology in which molecular biology techniques are used to genetically engineer animals in order to improve their suitability for agriculture, industrial and pharmaceutical applications. Advances in animal biotechnology have been facilitated by recent progress in sequencing animal genomes, gene expression and metabolic profiling of animal cells. Genome editing technologies (Zinc Finger Nucleases, TALENS, and CRISPR-Cas systems) have opened up new opportunities to easily create genetic variations in animals that can improve their health and well-being, agricultural production, and protection against diseases.

Course outcomes

CO1. Providing students with a theoretical and practical understanding of animal biotechnology.

CO2. Describe the structure of animal genes and genomes.

CO3. Describe how genes are expressed and what regulatory mechanisms contribute to control of gene expression.

CO4. Describe basic principles and techniques in genetic manipulation and genetic engineering, describe gene transfer technologies for animals and animal cell lines.

CO5. Describe techniques and problems both technical and ethical in animal cloning.

Unit	Unit Title	Intended learning chapter		Hours of
		(K1, K2)	K3, K4 &K5)	instruction
I	Animal cell culture media and sterilization	Media for culturing cells and tissues; natural and defined media Preparation of various tissue culture media, sterilization and storage	Sterilization of various equipments and apparatus Short-	12

C.	116	huc	•
ЭV	па	bus	5

II	Techniques in animal cell culturing and breeding	Techniques in Animal Tissue Culture Development and maintenance of cell lines	<i>Invitro</i> culture of oocytes/embryos Cell/embryo cryopreservation Conventional methods of animal improvement, predominantly selective breeding and cross breeding, IVF	12
III	Biotechnology for animal improvement	Embryo biotechniques for augmentation of reproductive efficiency and faster multiplication of superior germ plasm.	Transgenesis for animal improvement and production of animals as bioreactors for proteins of pharmaceuticals value Gene mapping in farm animals Marker- assisted selection and genetic improvement of livestock. Gene therapy	12
IV	Drug discovery and delivery systems	Drug Discovery and the drug development process. Applications of genomics, proteomics and related technologies upon drug discovery.	Delivery of Biopharmaceutical s-Oral delivery systems –	12
V	Biopharmaceutic als	The cytokines – The interferon family, cytokines as Biopharmaceuticals. TNF – therapeutic aspects.	Haemopoietic growth factors, Growth factors, Hormones of therapeutic interest, Blood products, therapeutic enzymes and Nucleic acid therapeutics.	12

REFERENCES:

Text Books;

- 1. B.D. Singh 2017, Animal biotechnology 5th ed. ABM Publishers, New Delhi
- 2. A.Ramadass 2019Animal biotechnology, Oxford Publishers, New Delhi
- 3. R.C.Dubey 2014,Advanced Biotechnology 5th revised.ed.S. Chand Publications, New Delhi
- 4. A.Ranga 2019. Animal biotechnology 3rd ed. Agrobios,India
- 5. Ian Fresney, 2016. Invitro cultivation of animal cells . 7TH ed. Wiley Publications, New Delhi.
- 6. Gary Walsh, 2018.Biopharmaceuticals Bench mark. John Wiley and Sons, New York
- 7. S.P. Vyas and K.C. Dixit.2019. Pharmaceutical Biotechnology . CBS publishers, New Delhi
- 8. Ritter Rod Flower Graeme Henderson Humphrey Rang.2015.Rang and Dale Pharmacology 8th edition, Elsevier, Academic Press. New York.
- 9. S.N.Jogdand, 2011 Medical Biotechnology 4th ed. New Age Publishers, New Delhi
- **10.** S.N. Mukhopadhay. 2019. Process Biotechnology Fundamentals 4rth revised ed.MV Learning Pvt. Ltd., New Delhi

III SEMESTER MOLECULAR AND IMMUNO DIAGNOSTICS (IE)

Course Code: BCH 301 Marks: 100

Hours: L + T + P = C4 1 0 5

Unit	Unit Title	Intended lear	ning chapter	Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Introduction and	Molecular probes,	DNA finger	12
	Concept of	Amplification of	printing	
	Molecular	DNA, Isolation and	techniques and	
	Diagnostics	purification of	their application,	
		RNA , DNA	Detection of	
		(genomic and	sequences at the	
		plasmid) and	gross level, single	
		proteins, different	nucleotide	
		separation methods;	polymorphisms	
		analysis of RNA,	(SNPs),	
		DNA and proteins	importance of	
		by one and two	SNPs, forensic	
		dimensional gel	applications of	
		electrophoresis,	VNTRs RFLP,	
		isoelectric focusing.	RAPD, AFLP, in	
			vitro mutagenesis	
			and deletion	
			techniques,	
			signature-tagged	
			mutagenesis.	
II	Micro Array-base	G-banding, in situ	PCR and its	12

Syllabus

	diagnostics	hybridization (FISH and on-FISH), comparative genomic hybridization (CGH) , Phage display concept and applications of Phage display , Immunoarrays, FACs	variants, factors influencing PCR and their applications, Quantitative PCR, LCR.	
m	PCR based diagnostics	Southern blot, Western blot diagnostics, RNA interference and siRNA technology.; Micro RNA	gene silencing and applications. Suicide gene therapy, Gene replacement, Gene targeting; Gene Therapy and its applications. Principle and application of gene silencing.	12
IV	Immunodiagnost ics	Concept and basis of development of diagnostics and tools used. Immuno electrophoresis: rocket immunoelectrophor esis	CIE, Graber and William Technique, RIA, Flow cytometryimmuno fluorescence FACS, ELISA, RIA and immunoblotting. ELISA – Methodology and a Immuno fluorescer indirect and Sandwich Immuno diagnosis of infectio respiratory diseases	12
V	Polyclonal and Monoclonal antibodies	PolyclonalandMonoclonal	Development of rapid diagnostic tests and their applications . Biochemical diagnostics, development. Biochemical markers of disease diagnosis and their applications.	12

References:

TEXT BOOKS

1. Molecular Diagnostics:Current Technology and Applications by Juluri R. Rao, Colin Craig Fleming, John Edmund Moore – 2006

2. Molecular Diagnostics: A Training and Study Guide by Gregory J. Tsongalis, William B. Coleman - 2002

3. Molecular Diagnostics: For the Clinical Laboratorian by William B. Coleman, Gregory J. Tsongalis - 2006

4. Molecular Diagnostic PCR Handbook by Gerrit J. Viljoen, L. H. Nel, J. R. Crowther – 2005

5. The Neuropathology of Dementia by Margaret M. Esiri, Virginia M.-Y. Lee, John Q. Trojanowski

6. Diagnostic Bacteriology Protocols, by Louise O'Connor - 2006

7. Immunodiagnosis of Cancer by Ronald B. Herberman, Donald W. Mercer – 1990

8. Immunodiagnostics: A Practical Approach by Ray Edwards – 1999

III SEMESTER

INTERMEDIARY METABOLISM (CORE COURSE)

Course Code: BCH 302 Marks: 100 Hours: L + T + P = C4 1 0 5

Course objectives

Understand reactions and importance of cellular metabolism and connection to physiology. Understand some of the clinical pathology like starvation, Diabetes, etc. Explain the major catabolic and anabolic pathways by which human cell types metabolize carbohydrates, lipids, amino acids and nucleotides. To explain the molecular mechanisms underlying the major inherited diseases of metabolism. To recognize the role of vitamins and minerals in intermediary metabolism.

Course outcomes

CO1. Understand the differences between anabolic and catabolic processes in metabolism

CO2. In this course, students learn about the energy producing pathways of glycolysis, Krebs cycle, oxidative phosphorylation, and fatty-acid oxidation.

CO3. Be able to describe how anabolic and catabolic processes are coupled to energetics from ATP hydrolysis

CO4. Understand redox and electron transfer reactions in biological systems

CO5. Understand that reaction coordinate diagrams are useful for thermodynamics of coupling anabolic and catabolic processes in metabolism

CO6. Define the major pathways of intermediary metabolism of biomolecules, and discuss their bioenergetics, physiological adaptation, metabolic and main hormonal regulation, localization and cellular compartmentalization.

CO7. Correlate the metabolic activity of tissues and organs with their function.

CO8. Discuss how disruptions in intermediary metabolism may lead to disease, and illustrate with selected examples

Unit	Unit Title	Intended lear	ning chapter	Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Energy metabolism	Thermodynamic principles – Chemical equilibria; free energy, enthalpy (H), entropy (S), High energy compounds. Oxidati on-reduction reactions. Oxidative phosphorylation – the chemiosmotic theory.	Light harvesting complexes; mechanisms of electron transport; photo protective mechanisms; CO2 fixation-C3, C4 and CAM pathways.Mechani sm of ATP synthesis. Inhibitors & Uncouplers of oxidative phosphorylation. Mitochondrial transport system, ATP/ADP exchange, malate / glycerol phosphate shuttle.	12
II	Carbohydrate metabolism	Glycolysis, Citric acid cycle, HMP shunt and its significance, Uronic acid pathway, Cori cycle, Glyoxylate pathway, Gluconeogenesis	Glycogen metabolism and its regulation. Integration of Metabolic pathways. Amphibolic role of TCA cycle. Anaplerotic reactions Energetics and regulation of carbohydrate metabolism.	12

SYLLABUS

III	Protein metabolism	Degradation of proteins by proteases,Transamin ation, oxidative and non-oxidative deamination, decarbodxylation - urea cycle and its regulation. Nitrate and ammonium assimilation	Pasteur effect, warburgh effect and crab tree effect. Digestion and absorption of carbohydrates. Biosynthesis and degradation of Amino acids. Clinical significance of Biological amines (Serotonin, gamma aminobutyric acid, dopamine, epinephrine, nor-	12
			epinephrine, melanin, creatinine).	
IV	Nucleotides	Biosynthesis and degradation of purine and pyrimidine nucleotides and its regulation. Purine salvage pathway. Role of ribonucleotide reductase.	Biosynthesis of deoxyribonucleoti des and polynucleotides including inhibitors of nucleic acid biosynthesis. Porphyrins – Biosynthesis and degradation of porphyrins. Production of bile pigments. Biochemistry of biological nitrogen fixation.	12
V	Lipid Metabolism	Biosynthesis and degradation (α , β and ω oxidation) of saturated and unsaturated fatty acids. Regulation of fatty acids metabolism. Metabolism of triaclyglycerol, Phospholipids and sphingolipids	Cholesterol biosynthesis, degradation and regulation. Cholesterol transport and excretion. Lipoprotein metabolism. Arachidonic acid metabolism.	12

REFFERENCES

TEXT BOOKS

- 1. Donald Voet. J.G. Voet and John nwILEY, Biochemistry.
- 2. Murray et al. Harper's Biochemistry, 26th ed. Mc Graw Hill.
- 3. Nelson & cox, Lehninger's Principles of Biochemistry, 4th ed. McMillian Worth.
- 4. Stryer, Biochemistry, 5th ed. Freeman.
- 5. Biochemistry Geoffrey L, Zubay, 4th edition.
- 6. Fundamentals of Biochemistry Donald voet, Judith Voet and Pratt, 2nd edition.
- 7. Harper's Biochemistry Murray et al, 25th edition, Appleton and Lange Publishers.
- 8. Principles of Biochemistry Lehninger, Nelson and Cox, 4th edition, WH Freeman and Campbell New York, USA

III SEMESTER

NUTRITIONAL BIOCHEMISTRY (CORE COURSE)

Course Code: BCH 303	Hours: I	_ +	T -	- P =	С
Marks: 100		4	1	0	5

Course objective

The course is an introduction to nutritional biochemistry. The students will learn how nutrients effect biochemical processes and signal transduction pathways, and how this can lead to development of nutritionally related diseases. The laboratory course will give insight in biochemical methods and analyses used in nutritional research.

Course Outcomes

CO1. The paper provides the structural and functional role of cell organelles and cell membrane at the biological level.

CO2. Students will be exposed classification, biochemical and required quantities

of nutrients in diet.

CO3. It helps students to understand the nutritive roles of macro and micro nutrients.

Syllabus

Unit	Unit Title	Intended learning chapter		Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Body weight and the body composition	Determination of body fat and body water. Body composition during growth and energy requirements. Measurement of energy expenditure, direct and indirect calorimetry, Respiratory quotient and BMR.		12
II	Protein nutrition	Essential and non- essential amino acids. Nitrogen balance, methods of calculation of biological value of proteins.	Protein calorie deficiency Kwashiorkor and Marasmus. Fats as component of diet, Energy value of fats. Essential fatty acids and Phospholipids in nutrition	
Ш	Nutraceuticals and Functional Foods	Sources of Nutraceuticals. Properties, structure and functions of various Phytonutraceuticals (Glucosamine, Lycopene, Carnitine, grape products, flaxseed oil as nutraceuticals).	Anti-nutrients and Dietary fibers in nutrition. Nutraceutical remedies for common disorders like Bronchitis, circulatory problems, hypoglycemia, Nephrological disorders, Liver disorders, Osteoporosis.	12
IV	Macro and micro elements	Macro and micro elements in nutrition as regards to dietary sources. Deficiency symptoms, diseases and recommended dietary allowances.		
V	Starvation	Techniques for the study of starvation and malnutrition.	Nutritional requirements for infants, children,	

Prote	n metabolism in	pregnant a lactating	
prolo	nged fasting.	woman and in old	
Obes	ty – Definition,	age. Importance of	
Gene	ic and	Nutrition under	
envir	onmental factors	stress conditions.	
leadin	ng to obesity.		

REFERENCES TEXT BOOK

- Techniques of Food Analysis Andrew L Winton and Kate Barber Winton, 2001, Published by Agrobios (India Ltd).
- 2. Human nutrition and Dietics Garrow and James, 1996, 9th edition, published by chruchill Livingstone eiNC.
- 3. Antioxidant status, diet, nutrition and health Andreas M Papers, 1996, published by CRC Press Washington, DC.
- 4. Nutritional Biochemistry Tom Brody, 1994, Academic Press, USA.
- 5. Food Fundamentals Margaret Mc Williams, 2nd Swaminathan.
- 6. Text book of Physiology and nutrition-M. Swaminathan.
- 7. Harper's Biochemistry
- 8. Trace Elements by Underwood.
- 9. Nutrition by M.S.Swaminathan.
- 10. The book of Human Nutrition (1996) MS. Bamji, N. Prahlad Rao and V. Reddy.

III SEMESTER

RESEARCH METHODOLOGY (CORE COURSE)

Course Code: BCH 303 Marks: 100 Hours: L + T + P = C4 1 0 5

Unit	Unit Title	Intended lear	ning chapter	Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Research	Types:	Selection of a	12
	Significance &	Fundamental,	problem-	
	Planning	Applied- Qualities	Formulation of	
		of Research- Steps	Research	
		involved in	Problem- Need for	
		Scientific Research.	literature review-	
			sources of	
			literature-	
			Hypothesis	

			formation – Types of Hypothesis.	
Π	Research Design & Report writing	Basic principles- Features of a good design-experimental design. Sampling methods: characteristics of a good sample design, probability and non- probability sampling methods.	of reports – layout of research report- principles of writing – references – appendices- format of	12

References

1. Anthony, M. Graaziono, A.M. and Raulin, M.L., 2009. Research Methods. A Process of Inuiry. Allyn Bacon.

2. Burno, R.B, 2000. Introduction to research methods. New Delhi: Sage publications

3. Colin, S.M and Sheinberg, C.A 1990. Proposal Writing: New Delhi: Sage publications

4. Aay, R.A. 1992. How to Write and publish a scientific paper, Cambridge University Press.

5. Fink, A. 2009. Conducting research literature reviews: From the internet to paper, New Delhi: Sage publications

6. Kothri, C.R. 2004. Research methodology. Methods and techniques. New Delhi. New age International Publishers.

7. Leedy, P.D and Ormrd, J.E.2004: practical research: planning and design New York: prentice hall.

8. Satarkar, S.V.2000. Intellectual property rights and copy rights. ESS publications

9. William, C.G. 1981. Concepts of statistical influence 2nd edition. New York: Mc. Grave hill international

III SEMESTER BCH 304: QUALITY CONTROL/ LABORATORY MAINTAINANCE (EXTERNAL ELECTIVE)

Course Code: BCH 304	Hours: L +	- T -	+ P =	: C
Marks: 100	4	1	0	5

Course Objectives

Explain quality and quality control, Define quality,Explain differences between quality control and statistical quality control,Determine several quality concept,Define Quality Assurance System and Total Quality Management, Express the main attributes of Quality Assurance SystemDefine the Total Quality Managemen.

Course Outcomes

CO1. Use the Problem Solving Techniques;

CO2. Distunguish between techniques,

CO3. Apply Problem Solving Techniques;

CO4. Calculate, analyse and interpret quality costs,

CO5. Analyse Measurement System;

CO6. Express the importance of Measurement System and analysis,

CO7. Raise data collection assurance,

CO8. Define Statistical Quality Control,

CO9. Question and interpret production or service quality by using different quality control charts

Unit	Unit Title	Intended lear	ning chapter	Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Essentials of quality control		Bio analytical and microbiological methods, working of instruments/appara tus/equipment, biological assays, application of	12

			testing of	
			biopharmaceutical	
П	Quality Assurance	Quality checks - quality assurance samples, master sample, internal controls, statistical analysis of test data, techniques and concepts of statistical quality control and statistical process control, non- conformities.	Operational aspects – calibration, accuracy checks of quality control equipments like stability chambers and BOD incubators, HPLC, gas chromatography, etc., application softwares used in quality analysis Handling Instruments of HPLC, Gas chromatography	12
III	Safety and Security at workplace	Different types of occupational health hazards, knowledge of chemical substances, characteristics & safety measures, use of safety gears, masks, gloves & accessories, evacuation procedures for workers & visitors	Health, safety & security issues – types (illness, fire accidents), company policies and procedures, When and how to report, summon medical assistance & emergency services	12
IV	Clean work station	Cleaning the work area and equipments, materials and equipments required for cleaning, adequate ventilation for the work area, personal protective equipments, dealing with accidental damage, procuring and storing housekeeping equipment and supplies, disposal of		

		wastes, maintain schedules and records for housekeeping		
V Repor docum in qua	nentation	Reporting – company procedures, escalation matrix for reporting identified issues - defects, problem, incidents, quality issues and test results, feedback to production manager and R&D staff.	practices, offline and online mode, accuracy, details, controlled	12

References

Text books

- 1. Quality Assurance Guide by organization of Pharmaceutical Procedures of India, 3rd revised edition, Volume I & II, Mumbai, 1996.
- 2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol. 69, Marcel Dekker Series, 1995.
- 3. Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.
- 4. How to Practice GMP's P P Sharma, Vandana Publications, Agra, 1991.
- 5. The International Pharmacopoeia vol I, II, III, IV & V General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excepients and Dosage forms, 3rd edition, WHO, Geneva, 2005.
- 6. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.

SEMESTER-III PRACTICAL - I PRACTICAL EXAM: 6 HRS / DAY: 1

PRACTICAL -1 GENETIC ENGINEERING and INTERMEDIARY METABOLISM

Course Code: BCH(P:301& 302) Marks: 100

Hours: L + T + P = C0 0 5 4

COURSE OBJECTIVE

The contents for above practicals are designed to impart hand on experimental knowledge on the various techniques in genetic engineering and biotechnological experiments. This would enable them to design experiment for the production of recombinant products using above molecular techniques.

COURSE OUTCOMES

CO1. To provide students with Conceptual knowledge on emergence of recombinant DNA technology from knowledge gained in biochemistry, genetics, cell biology and molecular biology.

CO2. Overview of the important techniques used in sequencing, amplification and cloning of DNA

CO3. Gain knowledge on the significance of important enzymes and cloning. Able to Importance of different type of vectors available and basis for their construction and selection.

List of Experiments- GENETIC ENGINEERING

- 1. Isolation of Plasmid DNA mini and maxi, preps
- 2. Restriction digestion of plasmid, single and double digestion
- 3. Cloning of genes and their selection
- 4. Construction of restriction map of a plasmid *insilico* using addgene and restriction mapper
- 5. Identification of coding region or ORF using ORF finder
- 6. Design of PCR primers
- 7. Amplification of DNA by PCR.
- 8. Purification of DNA fragment from gel by electro elution
- 9. Purification of DNA fragment from gel by affinity chromatography

List of experiments- INTERMEDIARY METABOLISM

- **1.** Estimation of blood glucose.
- **2.** Estimation of blood urea.
- **3.** Estimation of creatine in serum.
- 4. Estimation of calcium and phosphorus in the serum

- 5. Estimation of uric acid in serum.
- 6. Estimation of serum total proteins.
- 7. Estimation of serum albumin.
- **8.** Estimation of serum total cholesterol.
- **9.** Estimation of bilirubin
- **10.** Estimaiton of vitamin-C
- **11.** Electrophoretic behavior of serum proteins
- **12.** Field visit Visiting a neighboring hospital and finding out how the blood is collected and processed in hospital.

References

- 1. Isolation of Plasmid DNA mini and maxi, preps
- 2. Restriction digestion of plasmid, single and double digestion
- 3. Cloning of genes and their selection

4. Construction of restriction map of a plasmid insilico using addgene and restriction mapper

- 5. Identification of coding region or ORF using ORF finder
- 6. Design of PCR primers
- 7. Donald Voet. J.G. Voet and John nwILEY, Biochemistry.

8. Murray et al. Harper's Biochemistry, 26th ed. Mc Graw Hill.

- 9. Nelson & cox, Lehninger's Principles of Biochemistry, 4th ed. McMillian Worth.
- 10. Stryer, Biochemistry, 5th ed. Freeman.
- 11. Biochemistry Geoffrey L, Zubay, 4th edition.

SEMESTER-III PRACTICAL - II PRACTICAL EXAM: 6 HRS / DAY: 1

PRACTICAL -II NUTRITIONAL BIOCHEMISTRYCourse Code: BCH(P:303)Hours: L + T + P = CMarks: 10005

Course objective

The course is an introduction to nutritional biochemistry. The students will learn how nutrients effect biochemical processes and signal transduction pathways, and how this can lead to development of nutritionally related diseases. The laboratory course will give insight in biochemical methods and analyses used in nutritional research.

Course Outcomes

CO1. The paper provides the structural and functional role of cell organelles and cell membrane at the biological level.

CO2. Students will be exposed classification, biochemical and required quantities of nutrients in diet.

CO3. It helps students to understand the nutritive roles of macro and micro nutrients.

List of Experiments

- 1. Determination of reduced Ascorbic acid by DCPIP method.
- 2. Determination of total Ascorbic acid by DNPH method.
- 3. Determination of Thiamine by colorimetry.
- 4. Determination of copper in food.
- 5. Determination of calcium in food.
- 6. Determination of iron in food.
- 7. Isolation of casein from milk and determination of its protein by any conventional.
- 8. Determination of cholesterol of edible oil.
- 9. Determination of ash content.
- 10. Determination of moisture content of foods/food grains/powders.
- 11. Determination of lactose from skimmed milk and the estimation of lactose.
- 12. Determination of pyridoxine of fruits/leaves.

REFERENCES

1. Techniques of Food Analysis – Andrew L Winton and Kate Barber Winton, 2001, Published by Agrobios (India Ltd).

2. Human nutrition and Dietics – Garrow and James, 1996, 9th edition, published by chruchill Livingstone eiNC.

3. Antioxidant status, diet, nutrition and health – Andreas M Papers, 1996, published by CRC Press Washington, DC.

- 4. Nutritional Biochemistry Tom Brody, 1994, Academic Press, USA.
- 5. Food Fundamentals Margaret Mc Williams, 2nd Swaminathan.
- 6. Text book of Physiology and nutrition-M. Swaminathan.
- 7. Harper's Biochemistry
- 8. Trace Elements by Underwood.
- 9. Nutrition by M.S.Swaminathan.

10. The book of Human Nutrition (1996) MS. Bamji, N. Prahlad Rao and V. Reddy.

		п	п	п	D	п	п	п	п	п	DO	DO	D
SUBJECT NAME	COURSE OUTCOME	P O	P	P	P O	P	P O	P O	P O	P	PO 10	PO	P O
NAME	OUICOME	0	0	$\begin{bmatrix} 0\\ 2 \end{bmatrix}$		0 5		7		0	10	11	0
		1	2	3 EME	4 STEI		6	/	8	9			12
DCII 401.	TT. d	✓			STEI ✓	<u> </u>							\checkmark
BCH 401:	Understanding the basic	v	×		v								v
GENOMICS													
&	concepts of												
DDOTEOM	genomics,												
PROTEOMI CS	metagenomics,												
CS	proteomics, learning of												
	U U												
	genomics tool box with												
	special focus on PCR and												
	Non PCR												
	based												
	approaches												
	Understanding	\checkmark						 ✓ 	\checkmark			\checkmark	
	of DNA	•						•	•			•	
	microarrays ,P												
	rotein arrays,												
	Community												
	genome arrays												
	Phylogenetic												
	oligonucleotid												
	e arrays, depth												
	of knowledge												
	on application												
	of Omic												
	technologies in												
	Bioprospecting												
	and												
	Agriculture.												
	Explain the			\checkmark					\checkmark		\checkmark		\checkmark
	principles and												
	protocols of												
	2DE, Mass												
	spectrometry												
	analysis MS 2-												
	DE/MS, ICAT		,										
	Training on	\checkmark	✓	\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark
	bioinformatics												
	tools like												
	nBLAST,												
	pBLAST,												
	Multiple												

SEMESTER-IV

	Sequence Analysis and Gene Annotation of genome sequences Amplification of 16S DNA, Separation and characterizatio n of proteins.										
BCH 402: CLINICAL BIOCHEMIS TRY (CORE COURSE)	Clinical Biochemistry aims to initiate the student in understanding the in vitro study of the biological properties that contribute to the prevention, diagnosis, prognosis and monitoring of diseases and disease states in humans	~	✓	✓		✓			✓		✓
	Familiarize students with the specific characteristics of a laboratory of clinical biochemistry. It trains the students to gain concepts of assessing the human physiology using biological fluid.	~	~	V			×	√		~	V
	clinical laboratory techniques to determine biochemical	•	~	~		~			√	√	 ✓

	and genetic markers of different pathologies and critically assess the results, speculating on the nature of any possible underlying pathologie									
BCH 403: TECHNO ENTRENEUR BIOETHICS	Understand their personal characteristics and interests to that of the "successful" entrepreneur, Identification and assess sources of support for small businesses and entrepreneurs	~	✓	~	~		 	✓	✓	
	Eevaluate methods of entering an entrepreneursh ip venture — including but not limited to starting a new venture, buying an existing business, or becoming a franchisee Acquire idea and information on funding for start-ups	•	✓					✓	✓	✓
	Different forms of	✓	\checkmark	~	~		\checkmark	~	~	~

patents, terms and conditions of patents						
or patentis						

IV SEMESTER

GENOMICS & PROTEOMICS(SKILL ENHANCEMENT COURSE)

Course Code: BCH(401)	Hours: $L + T + P = C$
Marks: 100	0 0 5 4

Unit	Unit Title	Intended lear	ning chapter	Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Introduction to	Genomics,	PCR dependent	12
	omics	Transcriptomics,	approaches of	
		proteomics,	DNA	
		metabolomics and	amplification	
		omic data bases.	RFLP, AFLP, T-	
		Sequencing by	RFLP, ARDRA,,	
		conventional,	RISA,	
		automated and next	DGGE/TGGE,	
		generation	Real-time PCR (q-	
		sequencing	PCR). PCR-	
		approaches-	independent	
		advantages and	amplification	
		limitations.	approaches-	
			Multiple	
			Displacement	
			Amplification	
			(MDA).	
II	Microbiome-	Whole genome	Pipeline of the	12
	Metagnomic	analysis. Functional	metagenomic	
	tools (sequence	genomics and	project.	
	based and	Metagenomic shift.	Advantages and	
	Functional		limitation of	
	metagenomics)		Metagenomics	
			approach.	
			Accessing	
			microbial diversity	
			using culture	
			independent	
			methods.	
		D	Culturomics.	
III	Proteomic Tools	Proteome,	. Proteome tools –	12
		Functional	2-DE Mass	
		proteomics,	spectrometry	

	ſ			1
		metaproteome.	analysis MS (ESI-	
			MS/MS) 2-DE/MS,	
			ICAT, Yeast two	
			hybrid analysis;	
			Peptide finger	
			printing.	
			Identification of	
			post-translational	
			modifications:	
			Phosphorylation,	
			Glycosylation,	
			Acetylation	
IV	Proteome	Methods for	Sequence based	
	analysis	sequencing proteins:	protein prediction:	
		Edman degradation.	Homology or	
			comparative	
			modeling, Remote	
			homology	
			(Threading),	
			Protein function	
			prediction.	
V	Microarrays	DNA and Protein	Application of	
		arrays, Analysis of	omic technologies	
		gene expression	in Bioprospecting.	
		patterns using	Integration of	
		labeled probes.	omic platforms,	
		Functional gene	interactomics,	
		arrays (FGA),	Systems biology	
		Community genome		
		arrays (CGA)		
		Phylogenetic		
		oligonucleotide		
		arrays-Application		
		and limitations.		
			•	

References:

TEXT BOOKS

- 1. Principles of Proteomics by Richard Twyman, Bios Scientific Publishers Tylor and Francis group 2004.
- 2. Proteomics. S.R. Pennigton and M.J. Dunn Viva books. New Delhi, 2002.
- 3. Genomes 3 by T.A. Brown, Garland science Tylor and Francis group 2006.
- 4. Introduction to Genomics by Lesk 2015.
- 5. Introduction to protein Science: Architecture, Function and Genomics by Lesk 2010 Oxford.
- 6. Genomics Fundamentals and Applications by SupratimChoudhuri& David B Carlson 2008.
- Molecular Cell Biology, Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul Matsudaira, David Baltimore, and James Darnell 4th edition W.H. Freeman and Company 2000.

- 8. Genomics and Proteomics Principles, Technologies and Applications by DevarajanThangadurai and JeyabalanSangeetha1 ed. CRC and Apple Academic Press 2015Microarrays for an integrative genomics. A.J. Kohane, IS., Kho, A and Butte Barnes and Nobles, MIT press.
- 9. Molecular biology Philip C Turner Garland Science2005.

IV SEMESTER

CLINICAL BIOCHEMISTRY (CORE COURSE)

Course Code: BCH(402) Marks: 100 Hours: L + T + P = C0 0 5 4

Unit	Unit Title	Intended learning chapter		Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Specimen	Introduction and	Disorders of blood	12
	collection and	maintenance of	– blood diseases	
	Blood disorders	Clinical	(agranulocytosis,	
		Biochemistry	thrombocytopenia,	
		laboratory.	hemolytic anemia,	
		Collection,	hematuria,	
		preparation and	hemoglobinopathi	
		preservation of	es and	
		biological	thrombosis).	
		specimens such as	Blood clotting	
		blood, urine, CSF,	mechanism and	
		bile, Saliva and	disorders.	
		faeces.	Anticoagulants.	
			Tests used to	
			evaluate acid-base	
			status of blood and	
			their significance	
II	Disorders of	Disorders of	Atherosclerosis -	12
	Carbohydrate	carbohydrate	risk factors,	
	and Lipid	metabolism –Hyper	biochemical	
	Metabolism	and hypoglycemia,	findings and	
		regulation of blood	management Lipid	
		glucose, renal	metabolism:-	
		threshold, diabetes	Plasma lipids and	
		mellitus-	lipoproteins and	
		classification,	their functions.	
		metabolic	Hyper	
		abnormalities,	lipoproteinemias	
		diagnosis and	classification –	
		management. Acute	primary and	
		and long term	secondary,	

		complications of diabetes. Glucose tolerance test,	Cardiovascular disorders.	
		glycosylated hemoglobin, glycogen storage diseases, galactosemia,		
		fructosuria, pentosuria, ketone bodies.		
Π	Inborn errors of amino acid metabolism and clinical enzymology	non-protein nitrogenous constituents in blood - urea, uric acid and creatinine. Plasma protein abnormalities - deficiency, agammaglobulinemi a, Phenylketonuria, alkaptonuria, albinism, Hartnup's disease and maple syrup urine disease, multiple myeloma, homocystinuria, histidinuria, disorders of urea cycle.	Clinical Enzymology – Diagnostic applications of Enzymes, clinical significance of Asparatate transaminase, Creatine kinase, Lactate dehydrogenase, amylase, r- glutamyl transferase. Disorders of thyroid secretions and thyroid functional tests.	12
Ι	Disorders of Gastrointestinal Tract	Composition of gastric juice, Gastric function. Stimulation of gastric secretin, Composition of gastric secretin. Test for gastric function – fractional test meal. Pentagastrin test, hyperchlorohydria, achlorohydria, achlorohydria,	protein, carbohydrate, lipid, pigment metabolism,	12

V	Canaam	Canatia	creatinine clearance tests, nephritic syndrome.	
V	Cancer:	Genetic rearrangements in progenitor cells, oncogenes, tumor suppressor genes, mechanisms of protooncogene activation. cancer and the cell cycle, virus-induced cancer, interaction of cancer cells with normal cells, therapeutic interventions of uncontrolled cell growth, Cancer stem cells, embryonic signature in cancer stem cells, stem cell markers and factors. Apoptosis and Necrosis.	Tumor markers- AFP (alpha fetoprotein), CEA (carcino embryonic antigen), hcG (human chorionic gonadatropin), Carcinogenic agents. Agents causing cancer: Oncogenes and tumor suppressor genes – Institutional Ethics Committee and clinical trials, etc	

REFERENCES:

TEXT BOOKS

- 1. Mayne, Clinical Chemistry in Diagnosis and Treatment, ELBS.
- 2. Mosby, Clinical Chemistry Marshall 5th Ed.
- 3. Harrison's Principles of Internal Medicine. Vol 1 and 2, 14thed. Mc Graw Hill.
- 4. Williams and Wilkins, 2006, Biochemistry and Disease, Cohn and Roth.
- 5. Harper's 2013. Biochemistry, 26th ed. Mc Graw Hill.
- 6. Mosby, Biochemistry A Case Oriented Approach Montgomery et al.
- Varley's Practical Clinical Biochemistry Alan H Gowenlock, published by CBS Publishers and distributors, 2008, 6th edition India.
- 8. Textbook of Biochemistry with clinical correlations T.M.Devlin, 2002, 5th edition.

Biochemistry: A case oriented approach – Montogomery, Comway, Spector, Cappell, 1996

IV SEMESTER

TECHNO ENTRENEURSHIP & BIOETHICS

Course Code: BCH(402) Hours: L + T + P = CMarks: 100

0 0 5 4

Unit	Unit Title	Intended learning chapter		Hours of
		(K1, K2)	K3, K4 &K5)	instruction
Ι	Biosafety and Bioethics	Biosafety, Definition,	Regulationsforclinicaltrials,	12
		Requirement Biosafety and	Documentation and Compliance,	
		biodiversity,	in India and	
		Biosafety for human	selected countries	
		health and	- Rules for import and export of	
		environment, Social and ethical issues,	and export of biological	
		Biosafety in relation	materials	
		to transgenic		
		research and		
		applications.		
II	Regulatory	Good laboratory	Regulations for	12
	Procedures	practice, Good manufacturing	Animal ethical committee,	
		practice and FDA	Human ethical	
		regulations	committee	
			recombinant DNA	
			research and	
			manufacturing	
			process. Disposal of biomedical,	
			chemical waste	
			and animal waste.	
III	Entrepreneurshi	Significance of		12
	p Development	Entrepreneurship in	preparations for a	
		Economic	New Venture	
		Development;	Concept of	
		Characteristics, qualities and pre –	SME's, Govt. support to new	
		requisites of		
		entrepreneur.	of Finance;	
		Business	Entrepreneurship	
		opportunities	Development	
		identification	Programmes	
		Generation of Ideas;	(EDP); Emerging	
		screening of Ideas	trends in	

		1 01	F (1)	
		and Selection;	Entrepreneurship:	
		Identifying new	Technopreneurshi	
		Projects; Preparing	p, netpreneurs,	
		Project Profiles,	agripreneurs,	
		Feasibility Study of	Women	
		project.	entrepreneurship,	
			Portfolio	
			entrepreneurship,	
			Franchising.	
IV	Intellectual	Fundamentals	OECD guidelines	12
	property	regarding	for chemical	
		intellectual property	testing pertaining	
		(IP), intellectual	to use as drug,	
		property protection	related substances,	
		(IPP) and	excipients,	
		intellectual property	toxicity, etc. WHO	
		rights (IPR). TRIPs	guidelines for	
		(Trade Related	standardization of	
		Intellectual Property	raw material and	
		Rights) and GATS	finished products	
		(General Agreement	including herbal	
		on Trade in	products.	
		Services).	-	
V	Patent and	Indian Patent Act	Types of patent	12
	Copy Rights	1970 and the	applications-	~=
		Product Patent	provisional, non	
		Regime, 2005;	provisional, PCT	
		Patent application-	and convention	
		forms and	patent	
		guidelines, fee	applications;	
		structure, time	Patent	
		frames, jurisdiction	infringement.	
		aspects; Filing of a	Copy rights -	
		patent application;	Publication-article	
		specialized services-	/ thesis	
		search requests,		
		costs;		
	1		1	

References:

Text Books

1. Sree Krishna V 2007.Bioethics and Bio safety in Biotechnology., New Age International (P) Ltd., Publ., Mumbai. 2007

2. Deborah E. Bouchoux., 2005. Intellectual Property Rights. Delmar Cenage Learning.

- 3. The Indian Environmental Protection Act (EPA), 1986
- 4. Rules for manufacture, use/import/export and storage of hazardous microorganisms or cells Act, 1989
- 5. Food Safety and Standards act (Government of India), 2006
- 6. Singh, KC, 2016.Intellectual Property Rights on Biotechnology Central Law Agency..BCIL, New Delhi.

7.Eric Ries, 2020.The Lean Startup: How Constant Innovation Creates Radically Successful Businesses Kindle Edition

8. Dhruv Nath and Sushantho Mitra. 2020. Funding for your Start ups:and other nightmares. Kindle edition.

SEMESTER-IV **PRACTICAL - I** PRACTICAL EXAM: 6 HRS / DAY: 1

PRACTICAL -I GENOMICS & PROTEOMICS

Course Code: BCH(P:401)	Hours: $L + T + P = C$
Marks: 100	0 0 5 4

Course objective

The course is an introduction to nutritional biochemistry. The students will learn how nutrients effect biochemical processes and signal transduction pathways, and how this can lead to development of nutritionally related diseases. The laboratory course will give insight in biochemical methods and analyses used in nutritional research.

Course Outcomes

CO1. The paper provides the structural and functional role of cell organelles and

cell membrane at the biological level.

CO2. Students will be exposed classification, biochemical and required quantities

of nutrients in diet.

CO3. It helps students to understand the nutritive roles of macro and micro nutrients.

List of Experiments

- 1. Polyacrylamide gel electrophoresis of serum proteins
- 2. Glucose tolerance test
- 3. Estimation of Calcium
- 4. Estimation of serum cholesterol, lipoproteins.
- 5. Determination of SGOT.
- Determination of SGPT. 6.
- 7. Estimation of serum phosphate.
- Estimation of serum bilirubin 8.
- 9. Estimation of creatine in serum
- 10. Determination of urine Protein
- 11. Tests for abnormal constituents in urine
- 12. Field visit Visiting a neighboring hospital and finding out how the blood is collected and processed in hospital.

Project

200M

Biochemistry is a branch of science. The subject explores the chemistry of living organisms and that of their biological processes. Biochemistry deals with the chemical combinations and reactions that takes place because of the biological processes such as growth, reproduction, metabolism, heredity, etc.Biochemistry is considered as one of the most important areas of research that yield far-reaching discoveries. Combining the core concepts of various disciplines (primarily Chemistry and Biology), Biochemistry plays an essential role in the development of groundbreaking scientific methods and approaches.